首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三元非齐次方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T.求该非齐次方程组的通解.
设三元非齐次方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T.求该非齐次方程组的通解.
admin
2017-06-14
27
问题
设三元非齐次方程组的系数矩阵A的秩为1,已知η
1
,η
2
,η
3
是它的三个解向量,且η
1
+η
2
=[1,2,3]
T
,η
2
+η
3
=[2,-1,1]
T
,η
3
+η
1
=[0,2,0]
T
.求该非齐次方程组的通解.
选项
答案
r(A)=1,AX=b的通解应为k
1
ξ
1
+k
2
ξ
2
+η,其中对应齐次方程AX=0的解为 ξ
1
=(η
1
+η
2
)-(η
2
+η
3
)=η
1
-η
3
=[-1,3,2]
T
, ξ
2
=(η
2
+η
3
)-(η
3
+η
1
)=η
2
-η
1
=[2,-3,1]
T
. 因ξ
1
,ξ
2
线性无关,故是AX=0的基础解系. 取AX=b的一个特解为 η=[*](η
3
+η
1
)=[0,1,0]
T
. 故AX=b的通解为 k
1
[-1,3,2]
T
+k
2
[2,-3,1]
T
+[0,1,0]
T
,k
1
,k
1
为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/40wRFFFM
0
考研数学一
相关试题推荐
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=___________.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.矩阵A的特征值和特征向量.
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为F(x,y)=(Ⅰ)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率a.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解的情况下,求出其全部解.
(2010年试题,17)(I)比较的大小,说明理由.(Ⅱ)设求极限
随机试题
下列关于氟西汀的描述错误的是
成本是从事某种生产或经营时企业本身所耗用的费用和支出的总和。()
能诱发“流感综合征”的药物是()
A、气相色谱法B、液相色谱法C、薄层色谱法D、比色法E、电感耦合等离子体质谱法重金属元素含量测定采用
如图,位于地震区的非浸水公路挡土墙,墙高5m,墙后填料的内摩擦角φ=36°,墙背摩擦角δ=φ/2,填料重度γ=19kN/m3,抗震设防烈度为9度,无地下水。试问作用在该墙上的地震主动土压力Ea与下列哪个选项最接近?()提示:库仑主动土压力系数基本公
甲公司是一家从事污水处理业务的上市公司。2014年至2016年有关交易或事项如下:(1)2014年1月313,甲公司中标某市污水改造工程,合同规定该项目于2014年1月开工至2015年12月完工,2016年1月起投入运营,经营满20年后移交当地政府有
甲曾遭到乙的殴打,事后扬言要对乙报复。某日,乙路遇甲手持锄头迎面走来,以为甲将对自己行凶,便随手拾起一块砖头将甲打成轻伤,后查甲正好是从田间劳作归来,乙的行为构成()。
语言的发展、维持或衰落从来不是一个纯粹的语言学问题,而是复杂的社会、政治和经济力量相互博弈的结果。当前,学界主要从社会学、政治学以及经济学等视角探讨方言保护问题,而有关方言的法律保护尤其是行政法保护的研究尚不多见。因此,建立和完善我国方言保护的行政法机制,
我国现阶段,不同国有企业的职工,付出同样的劳动,获得的劳动报酬会有所差别,这是因为
Mostparents,Isuppose,havehadtheexperienceofreadingabedtimestorytotheirchildren.Andtheymusthave【C1】______how
最新回复
(
0
)