首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线积分上∫Ly2f′(χ)dχ+2y[f′(χ)-χ]dy与路径无关,其中f(χ)具有二阶连续的导数,且f(0)=1,f′(0)=0。求f(χ),并计算曲线积分∫(0,0)(1,1)y2f′(χ)dχ+2y[f′(χ)-χ]dy。
设曲线积分上∫Ly2f′(χ)dχ+2y[f′(χ)-χ]dy与路径无关,其中f(χ)具有二阶连续的导数,且f(0)=1,f′(0)=0。求f(χ),并计算曲线积分∫(0,0)(1,1)y2f′(χ)dχ+2y[f′(χ)-χ]dy。
admin
2017-11-30
31
问题
设曲线积分上∫
L
y
2
f′(χ)dχ+2y[f′(χ)-χ]dy与路径无关,其中f(χ)具有二阶连续的导数,且f(0)=1,f′(0)=0。求f(χ),并计算曲线积分∫
(0,0)
(1,1)
y
2
f′(χ)dχ+2y[f′(χ)-χ]dy。
选项
答案
令P(χ,y)=y
2
f′(χ),Q(χ,y)=2y[f′(χ)-χ], 已知该积分与路径无关,则有[*],即 2y[f〞(χ)-1]=2yf′(χ), 化简为f〞(χ)-f′(χ)=1,该方程为可分离变量方程,即[*]=dx两边同时积 分可得, f′(χ)=Ce
χ
-1, 代入初始条件f′(0)=0可得C=1,故f′(χ)=e
χ
-1,两边同时积分可得 f(χ)=e
χ
-χ+C
1
, 将初始条件f(0)=1代入,可得C
1
=0,故f(χ)=e
χ
-χ。 ∫
(0,0)
(1,1)
yf′(χ)dχ+2y[f(χ)-χ]dy与路径无关,则可选取折线路径简化计算, 其中L
1
:y=0,χ:0→1,L
2
:χ=1,y:0→1, ∫
(0,0)
(1,1)
y
2
f′(χ)dχ+2y[f′(χ)-χ]dy=∫
(0,0)
(1,1)
y
2
(e
χ
-1)dχ+2y(e
χ
-1-χ)dy =[*]y
2
(e
χ
-1)dχ+2y(e
χ
-1-χ)dy+[*]y
2
(e
χ
-1)dχ+2y(e
χ
-1-χ)dy =∫
0
1
2(e-2)ydy=e-2。
解析
转载请注明原文地址:https://jikaoti.com/ti/3lVRFFFM
0
考研数学一
相关试题推荐
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设∑是平面在第一卦限部分的下侧,则化成对面积的曲面积分为I=__________.
设f(x)在区间[1,+∞)上单调减少且非负的连续函数,(1)证明:存在;(2)证明:反常积分同敛散.
设f(x)的一个原函数为F(x),且F(x)为方程xy’+y=ex的满足的解.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,.证明:
曲线的全部渐近线为__________.
曲线的曲率及曲率的最大值分别为__________.
设f(x)在[0,+∞)上连续,非负,且以T为周期,证明:在(a,b)内至少存在一点ξ,使
随机试题
订货点等于_______加上_______之和。
在asp.NET中,如果需要上传一张新图片,则需要使用到以下()控件。
因果联系所揭示的是()
保证血液安全的前提和基础是()
《与贸易有关的知识产权协议》的基本准则不包括()。
小雪买了7瓶酸奶,共付款17.5元,喝完全部酸奶退瓶时,知道每个空瓶的价钱比瓶中酸奶的价钱少1.5元,那么小雪应收到退款多少元?()
下面哪一项对学生座位的分配是可以接受的?()1234若H和Y被分配到1号长凳,则下面哪一项可能正确?()
设f(x)在封闭区间[0,1]上有二阶导数,且,证明∫01f(x)≥1.
利用存储器总线时钟的上升沿与下降沿在同一个时钟内实现两次数据传送的SDRAM,常被称为【】SDRAM。
Livingisrisky.Crossingtheroad,drivingacar,flying,swallowinganaspirintabletoreatingachickensandwich--theycan
最新回复
(
0
)