罗尔定理:设函数f(x)满足条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)f(a)=f(b),则在(a,b)内至少存在一点ξ,使得f’(ξ)=0。证明这个定理并说明其几何意义。

admin2017-09-18  27

问题 罗尔定理:设函数f(x)满足条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)f(a)=f(b),则在(a,b)内至少存在一点ξ,使得f’(ξ)=0。证明这个定理并说明其几何意义。

选项

答案因f(x)在闭区间[a,b]上连续,所以在[a,b]上一定取到最大值M和最小值m。 (1)若M=m,则f(x)在[a,b]上是常数,f(x)=M,x∈[a,b]。从而f’(x)=0,因此,任取ο∈(a,b)都有f’(ξ)=0。 (2)若M≠m,则M,m中至少有一个不等于f(a),不妨设f(a)≠M。因此,函数f(x)在内(a,b)某一点ξ处取到最大值M。我们来证f’(ξ)=0。 由于f(x)在ξ处取最大值,所以不论△x为正或为负,总有f(ξ+△x)一f(ξ)≤0。当△x>0时,[*] 根据题意f(x)在ξ点处可导,所以f’(ξ)=f’+(ξ)=f’(ξ)=0。得证。 几何意义:设y=f(x)是一条连续光滑的曲线,并且在点A、B处的纵坐标相等,即f(a)=f(b),如图,那么我们容易看出,在弧AB上至少有一点C(ξ,f’(ξ)),曲线在C点有水平切线。 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/3fz9FFFM
0

相关试题推荐
最新回复(0)