首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
admin
2018-12-29
23
问题
设矩阵
,B=P
—1
A
*
P,求B+2E的特征值与特征向量,其中A
*
为A的伴随矩阵,E为三阶单位矩阵。
选项
答案
设A的特征值为λ,对应特征向量为η,则有Aη=λη。由于|A|=7≠0,所以λ≠0。 又因A
*
A=|A|E,故有A
*
η=[*]。于是有 B(P
—1
η)=P
—1
A
*
P(P
—1
η)=[*](P
—1
η),(B+2E)P
—1
η=[*]P
—1
η。 因此,[*]为B+2E的特征值,对应的特征向量为P
—1
η。 由于 |λE—A|=[*]=(λ—1)
2
(λ—7), 故A的特征值为λ
1
=λ
2
=1,λ
3
=7。 当λ
1
=λ
2
=1时,对应的线性无关的两个特征向量可取为η
1
=[*]。 当λ
3
=7时,对应的一个特征向量可取为η
3
=[*]。 [*] 因此,B+2E的三个特征值分别为9,9,3。 对应于特征值9的全部特征向量为k
1
P
—1
η
1
十k
2
P
—1
η
2
=[*],其中k
1
,k
2
是不全为零的任意常数; 对应于特征值3的全部特征向量为 k
3
P
—1
η
3
=k
3
[*],其中k
3
是不为零的任意常数。
解析
转载请注明原文地址:https://jikaoti.com/ti/3S1RFFFM
0
考研数学一
相关试题推荐
(06年)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解.(I)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设A,B,C是三个相互独立的随机事件,且0<P(C)<1,则在下列给定的四对事件中可能不相互独立的是()
设有向量组α1=(1,-1,c1,0)T,α2=(1,0,c2,3)T,α3=(0,0,c3,5)T,α4=(1,0,0,8)T,则下列结论正确的是()
设向量组α1=(6,λ+1,7),α2=(λ,2,2),α3=(λ,1,0)线性相关,则()
设随机变量X1,X2的分布函数、概率密度分别为F1(x),F2(x);f1(x),f2(x).如果a>0,b>0,c>0,则下列结论中不正确的是()
试将f(x)=x2,x∈[一π,π]展开为以π为周期的傅里叶级数,并由此求数项级数的“和数”.
计算曲线积分I=∫L[exf(y)一my]dx+[exf’(y)一m]dy,其中f、f’均为连续函数,L为连接点A(x1,y1)、B(x2,y2)的任一路径,且它与直线段AB所围成的图形D的面积为定值S.
设f(x)=nx(1-x)n(n=1,2,…),Mn是f(x)在[0,1]上的最大值,求极限
设随机变量X的绝对值不大于1,在事件{-1<X<1)出现的条件下,X在(-1,1)内任一子区间上取值的条件概率与该子区间的长度成正比.试求:X取负值的概率p.
设曲线=1(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
随机试题
()为现代旅游活动的蓬勃发展创造了十分优越的条件。
私人信息是指市场参加者所拥有的具有
不属于信噪比下降的原因是
大黄与芒硝配伍,能明显增强攻下泻热的治疗效果,其配伍关系是
A.胸腺B.甲状旁腺C.肾上腺皮质D.肾上腺髓质E.松果体褪黑素是由()产生的
A、紫外光谱B、红光光谱C、13C磁共振光谱D、旋光光谱E、质谱()对测定甾体皂苷元的结构十分有用
下列各选项中关于《划拨国有建设用地使用权管理暂行办法》的规定,叙述不正确的是()。
对单位工程竣工验收备案的描述,正确的是()。
常用的信用衍生工具包括()。
NoEnglishmanbelievesinworkingfrombooklearning.Hesuspectseverythingnew,anddislikesit,unlesshecanbecompelledby
最新回复
(
0
)