首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1(x)=x(1—2x),y2(x)=2x(1一x),y3(x)=x(ex一2x)是微分方程y”+p(x)y’+q(x)y=f(x)的3个解,其中p(x),q(x),f(x)是(0,+∞)上的连续函数,求此微分方程及其通解.
设y1(x)=x(1—2x),y2(x)=2x(1一x),y3(x)=x(ex一2x)是微分方程y”+p(x)y’+q(x)y=f(x)的3个解,其中p(x),q(x),f(x)是(0,+∞)上的连续函数,求此微分方程及其通解.
admin
2021-08-05
35
问题
设y
1
(x)=x(1—2x),y
2
(x)=2x(1一x),y
3
(x)=x(e
x
一2x)是微分方程y”+p(x)y’+q(x)y=f(x)的3个解,其中p(x),q(x),f(x)是(0,+∞)上的连续函数,求此微分方程及其通解.
选项
答案
注意到y
1
(x),y
2
(x),y
3
(x)的表达式中都有一2x
2
项,所以把它们每两个相减,得到 y
2
(x)一y
1
(x)=x,y
3
(x)一y
1
(x)=x(e
x
一1)是对应齐次方程的解,代入方程可解得 [*] 再将y
1
(x),p(x),q(x)一并代入原方程,可解得f(x)=2x.所以原方程为 [*] 根据齐次方程的解的性质,可知(y
2
(x)一y
1
(x))+(y
3
(x)一y
1
(x))=xe
x
也是齐次方程的解,且x,xe
x
线性无关,因此Y=C
1
x+C
2
xe
x
是齐次方程的通解. 另一方面,仍由方程的解的性质可知,y
*
=2y
1
(x)一y
2
(x)=一2x
2
是原方程的一个特解,因此原方程的通解为 y=C
1
x+C
2
xe
x
一2x
2
,其中C
1
,C
2
为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/3BlRFFFM
0
考研数学二
相关试题推荐
设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是().
若f(x)在x0点至少二阶可导,且=一1,则函数f(x)在x=x0处()
方程y’sinx=ylny满足条件=e的特解是
设A,B均是n阶实对称矩阵,则A,B合同的充分必要条件是()
设f’x(x0,y),f’y(x0,y0)都存在,则().
设n维向量组α1,α2,…,αs线性相关,并且α1≠0,证明存在1<k≤s,使得αk可用α1,…,αk-1线性表示.
设f(x)对一切x1,x2满足f(x1+x2)=f(x1)+f(x2),并且f(x)在x=0处连续,证明:函数f(x)在任意点x0处连续.
设有齐次线性方程组Ax=0和Bx=0,其中A、B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
设函数f(x)连续,则在下列变上限积分定义的函数中,必为偶函数的是()
设F(u,v)具有一阶连续偏导数,且z=z(x,y)由方程F(,yz)=0所确定.又设题中出现的分母不为零,则=()
随机试题
时快时慢,散乱无序的脉象是
周围型肺癌应鉴别的是中心型肺癌应鉴别的是
小儿指纹淡红,其证候是()
A、氟胞嘧啶B、阿糖腺苷C、阿糖胞苷D、吡喹酮E、头孢他啶具有抗肿瘤作用的是()。
以下岩体结构条件,不利于边坡稳定的情况是:
甲公司是一家基金公司。按照国家法律要求,公司从基金管理费中计提了风险准备金。用于赔偿因违法违规、违反基金合同等原因给基金财产或基金份额持有人合法权益造成的损失。甲公司采取的策略属于()。
宪法从其本质上讲仅是配置国家()的一种手段,而其根本目的是借助这种手段达到限制国家权力,并最终为作为国家组成分子的每一个单个个人提供平等的保护,进而促进作为整体的人类的文明与进步。
军事上的电子欺骗指的是利用电子设备对己方的相关信息进行伪装或者虚假模拟,欺骗敌方的电子侦察,使敌方对己方部署、作战能力和作战企图等产生错误判断,从而达到迷惑和扰乱敌方的目的。根据上述定义,下列涉及电子欺骗的是()。
假设5只晶体管中有两只次品,现在一只一只地检验直到查出两只次品为止.试求:(1)查出一只次品晶体管所需检查的次数X的概率分布;(2)查出两只次品晶体管所需检查的次数Y的概率分布.(3)X和Y的联合概率分布.
Peoplewhohaveexperiencedidentitytheftspendmonthstryingtorepairwhatothershavedamaged,andinthemeantimetheycann
最新回复
(
0
)