首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)内二阶可导,f(0)=-2,f’(0)=1,f"(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
设f(x)在[0,+∞)内二阶可导,f(0)=-2,f’(0)=1,f"(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
admin
2018-11-11
47
问题
设f(x)在[0,+∞)内二阶可导,f(0)=-2,f’(0)=1,f"(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
选项
答案
因为f"(x)≥0,所以f’(x)单调不减,当x>0时,f’(x)≥f’(0)=1. 当x>0时,f(x)-f(0)=f’(ξ)x,从而f(x)≥f(0)+x,因为[*]所以[*] 由f(x)在[0,+∞)上连续,且f(0)=-2<0,[*],则f(x)=0在(0,+∞)内至少有一个根,又由f’(x)≥1>0,得方程的根是唯一的.
解析
转载请注明原文地址:https://jikaoti.com/ti/3BWRFFFM
0
考研数学二
相关试题推荐
设f(x)连续(A为常数),φ(x)=∫01f(xt)dt,求φ’(x),并讨论φ’(x)在x=0处的连续性.
设当实数a为何值时,方程组Ax=β有无穷多组解,并求其通解.
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,一2,3)T+(1,2,一1)T,k为任意常数.令矩阵B=(α1,α2,α3,b+α3),证明方程组Bx=α1一α2有无穷多组解,并求其通
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足
已知下列非齐次线性方程组(I),(Ⅱ):当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设A为n阶方阵,且满足A2=3A,E为n阶单位矩阵.如果A≠O,证明3E—A不可逆.
设n阶实矩阵A为反对称矩阵,即AT=一A.证明:(A—E)(A+E)一1是正交矩阵.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f”(x)|≤b,其中a,b为非负常数,证明对任意x∈(0,1),有
设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记α为曲线l在点(x,y)处切线的倾角,若,求y(x)的表达式.
随机试题
A.CKB.CK-MBC.LDHD.ASTE.肌红蛋白
患者女,40岁。因突起腹中部疼痛发作伴血便3天入院。腹痛为阵发性,伴恶心、呕吐。呕吐为胃内容物,起病后曾解黏液血便3次。患者于1个月前腹痛开始反复发作,伴解黏液血便,腹痛发作时,自感有“气块”在腹内串动。体查:消瘦、贫血貌,腹稍胀,全腹软,无局限性压痛及肌
女,38岁,糖尿病12年,每日皮下注射入混合胰岛素治疗,早餐前30单位,晚餐前24单位,每日进餐规律,主食量300g。近来查空腹血糖12.5mmol/L,餐后血糖7.6~9.0mmol/L。为确定空腹高血糖的原因最有意义的检查是
医院营养科为血液病患者制定的菜谱中,有动物内脏(心、肝、肾)、鸡蛋黄、豆类、麦芽、海带、番茄、菠菜。此菜谱最适合下列哪种血液病
根据《外资企业法实施细则》的规定,外资企业将其财产或者权益对外抵押、转让的应当办理的手续是( )。
水土流失预测中,通用水土流失方程式A=R.K.L.S.P,式中S表示()。
下表不同建筑气候区内的城市中,住宅建筑日照标准日不符合《居住区规划设计规范》的是()
背景材料:北京附近某高速公路,是国家的重点建设项目,全长199km,为双向六车道高速公路,路面全宽22.5m,沥青混凝土表面层为沥青混凝土。结构为:20cm厚石灰稳定土底基层,18cm厚石灰粉煤灰稳定碎石基层,19cm厚水泥稳定碎石基层以及4cm厚沥青混
人民与公民在法律上是相同的概念。()
A、 B、 C、 D、 A
最新回复
(
0
)