设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,求方程组Ax=b的通解。

admin2018-11-22  36

问题 设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,求方程组Ax=b的通解。

选项

答案已知a2,a3,a4线性无关,则r(A)≥3。又由a1,a2,a3线性相关可知a1,a2,a3,a4线性相关, 故r(A)≤3。 终上所述,r(A)=3,从而原方程组的基础解系所含向量个数为4-3=1。又因为 a1=2a2-a3 [*] a1-2a2+a3=0[*](a1,a2,a3,a4)[*]=0, 所以x=(1,-2,1,0)T是方程组Ax=0的基础解系。 又由b=a1+a2+a3+a4可知x=(1,1,1,1)T是方程组Ax=b的一个特解。 于是原方程组的通解为 x=(1,1,1,1)T+c(1,-2,1,0)T,c∈R。

解析
转载请注明原文地址:https://jikaoti.com/ti/2k1RFFFM
0

最新回复(0)