设f(x,y)为连续函数,且f(x,y)=e—x2—y2+xy2f(u,υ)dudυ,其中D:u2+υ2≤a2(a>0),则f(x,y)=________.

admin2022-01-06  32

问题 设f(x,y)为连续函数,且f(x,y)=e—x2—y2+xy2f(u,υ)dudυ,其中D:u22≤a2(a>0),则f(x,y)=________.

选项

答案e—(x2+y2)+π(1—e—a2)xy2

解析 注意f(u,υ)dudυ为常数,记为A,由于xy2对u、υ来说为常数,因此对u,υ积分时可提到积分号外f(x,y)=e—x2—y2+Axy2
求f(x,y)归结为求常数A.等式两边在D内积分得
d(x,y)dσ=e—(x2+y2)dσ+Axy2dσ        ①
作极坐标变换
e—(x2+y2)dσ=∫0dθ∫0ae—r2rdr= —πe—r2|0a=π(1—e—a2
xy2dσ=0  (D关于y轴对称,被积函数对x为奇函数),
将它代入①式A=π(1—e—a2).
因此    f(x,y)=e—(x2+y2)+π(1—e—a2)xy2
转载请注明原文地址:https://jikaoti.com/ti/1ZhRFFFM
0

最新回复(0)