首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1 ,α2 ,α3 ,α4为四维列向量组,且α1 ,α2 ,α3线性无关,α4=α1+α2+2α3.已知方程组[α1一α2 ,α2+α3 ,一α1+α2+α3]X=α4有无穷多解. (1)求a的值; (2)用基础解系表示该方程组的通解.
设α1 ,α2 ,α3 ,α4为四维列向量组,且α1 ,α2 ,α3线性无关,α4=α1+α2+2α3.已知方程组[α1一α2 ,α2+α3 ,一α1+α2+α3]X=α4有无穷多解. (1)求a的值; (2)用基础解系表示该方程组的通解.
admin
2020-05-16
48
问题
设α
1
,α
2
,α
3
,α
4
为四维列向量组,且α
1
,α
2
,α
3
线性无关,α
4
=α
1
+α
2
+2α
3
.已知方程组[α
1
一α
2
,α
2
+α
3
,一α
1
+α
2
+α
3
]X=α
4
有无穷多解.
(1)求a的值;
(2)用基础解系表示该方程组的通解.
选项
答案
为求参数a的值,在线性代数中常先找出含此参数的等于0的行列式,然后解之。所给方程组由于有无穷多解,则 r(A)=r(α
1
一α
2
,α
2
+α
3
,一α
1
+aα
2
+α
3
)<3. 由 [α
1
一α
2
,α
2
+α
3
,一α
1
+aα
2
+α
3
]=[α
1
,α
2
,α
3
] [*] 知,必有[*] 从而可求出a,为求其基础解系,需将原方程组恒等变形去掉满秩矩阵,得其同解方程组而求之. 由题设,得矩阵 [α
1
一α
2
,α
2
+α
3
,一α
1
+aα
2
+α
3
]=[α
1
,α
2
,α
3
] [*] 的秩小于3,又α
1
,α
2
,α
3
线性无关,故矩阵[*]不可逆,由 [*]=2一a=0,得a=2. 方程组[α
1
一α
2
,α
2
+α
3
,一α
1
一2α
2
+α
3
]X=α
4
化为 [α
1
,α
2
,α
3
][*] X=[α
1
,α
2
,α
3
][*] 因为α
1
,α
2
,α
3
线性无关,所以原方程组与方程组[*]同解. 下面求方程组[*]的通解,为此先求出其导出组的基础解系及原方程组的二特解.将增广矩阵[*]用初等行变换化为系数矩阵含最高阶单位矩阵的矩阵: [*] 用基础解系、特解的简便求法得到其基础解系只含一个解向量α=[1,一1,1]
T
,特解为η=[1,2,0]
T
,故所求的通解为 kα+η=k[1,一1,1]
T
+[1,2,0]
T
,k为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/1OaRFFFM
0
考研数学三
相关试题推荐
微分方程xy’=+y的通解为________.
(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Ax=b恒有解的充分必要条件是r(A)=m.
已知3维向量组α1,α2,α3线性无关,则向量组α1一α2,α2一kα3,α3一α1也线性无关的充要条件是______.
设λ1,λ2为n阶实对称矩阵A的两个不同特征值,x1为对应于λ1的一个单位特征向量,则矩阵B=A-λ1x1x1T有两个特征值为_______.
设n维向量α=(a,0,…,0,a)T,a
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,r(A)=3,且α1+α2=,α2+α3=,则方程组AX=b的通解为________.
随机试题
企业的偿债能力取决于
施工成本计划按其作用的分类中( )是以合同标书为依据,按照企业的预算定额标准制定的设计预算成本计划,且一般情况下只是确定责任总成本指标。
申请首次公开发行股票并上市,发行人披露盈利预测的,利润实现数未达到盈利预测的50%的,除因不可抗力外,中国证监会在()个月内不受理该公司的公开发行证券申请。
当关联方之间存在重大影响时,无论相互之间有无交易,均应当在会计报表附注中披露关联方关系的性质。( )
学生李某因在上课时嬉戏打闹,被班主任打手10~30下,班主任的这种做法()。
【2014年四川宜宾.判断】顿悟是格式塔学派提出的关于学习的实质。()
服刑期间王尔德苦等道格拉斯来信,可迟迟没有消息。他为道格拉斯坐牢,道格拉斯却只顾着在外潇洒。更过分的是,他还想把王尔德的信件卖给出版商,趁机捞一票。王尔德十分愤怒,遂奋笔疾书教训这小子。信中王尔德历数了道格拉斯的种种缺陷、自己的种种好处,中心思想是:我对你
“重阳节”那天,延龄茶社来了25位老人品茶。他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000,其中年龄最大的老人今年()岁。
OnThursdays,Classes7,4,6and8havemusic.Classes3,4,6and7haveFrench.Classes1,6and3havegeography.Alltheclasse
AlongwiththegrandviewoftheGreatWall,travelerstoPekingshouldn’tmisstryingthePekingRoastedDuck.Toenjoythefam
最新回复
(
0
)