首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 设向量组(I):α1=[1,0,2]T,α2=[1,1,3]T,α3=[1,-1,a+2]T和向量组(Ⅱ):β1=[1,2,a+3]T,β2=[2,1,a+6]T,β3=[2,1,a+4]T.试问:当a为何值时,向量组(I)与(Ⅱ)等价?
[2003年] 设向量组(I):α1=[1,0,2]T,α2=[1,1,3]T,α3=[1,-1,a+2]T和向量组(Ⅱ):β1=[1,2,a+3]T,β2=[2,1,a+6]T,β3=[2,1,a+4]T.试问:当a为何值时,向量组(I)与(Ⅱ)等价?
admin
2019-04-28
37
问题
[2003年] 设向量组(I):α
1
=[1,0,2]
T
,α
2
=[1,1,3]
T
,α
3
=[1,-1,a+2]
T
和向量组(Ⅱ):β
1
=[1,2,a+3]
T
,β
2
=[2,1,a+6]
T
,β
3
=[2,1,a+4]
T
.试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向量组(I)与(Ⅱ)不等价?
选项
答案
解一 因[*] 故方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=α
i
(i=1,2,3)均有唯一解,因而对任意a,向量组(I)可用向量组(Ⅱ)线性表出.但 [*] 当a+1≠0即a≠-1时,方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3)有唯一解.因而β
1
,β
2
,β
3
可用α
1
,α
2
,α
3
线性表出,于是得到当a≠-1时向量组(I)和向量组(Ⅱ)等价.但当a=-1时,有 [*] 秩([α
1
,α
2
,α
3
])=2≠秩([α
1
,α
2
,α
3
])+1=秩([α
1
,α
2
,α
3
,β
1
])=3,故β
1
不能用α
1
,α
2
,α
3
线性表出.因而向量组(I)和向量组(Ⅱ)不等价. 解二 以α
1
,α
2
,α
3
,β
1
,β
2
,β
3
为列向量构造矩阵A,用初等行变换将其化为行阶梯形矩阵: [*] (1)当a+1=0即a=-1时,[*]显然β
1
与β
3
不能由 α
1
,α
2
,α
3
线性表示,故α
1
,α
2
,α
3
与β
1
,β
2
,β
3
不等价. (2)当a+1≠0时,有 [*] 因而β
1
,β
2
,β
3
可由α
1
,α
2
,α
3
线性表示,且 β
1
=[(1-2a)/(a+1)]α
1
+[(3a+1)I(a+1)]α
2
+[(a-1)/(a+1)]α
3
, β
2
=(-1)α
1
+2α
2
+aα
3
, β
3
=[(3-2a)/(a+1)]α
1
+[2a/(a+1)]α
2
+[(a-1)/(a+1)]α
3
. 以β
1
,β
2
,β
3
,α
1
,α
2
,α
3
为列向量构造矩阵B,用初等行变换将其化为行最简形矩阵,得到 [*] 可见 α
1
=(-1/3)β
1
+[(1-a)/6]β
2
+[(3+a)/6]β
3
, α
2
=(1/3)β
1
+[(1-a)/3]β
2
+(a/3)β
3
, α
3
=(-1)β
1
+[(1+a)/2]β
2
+[(1-a)/2]β
3
, 因而对任意a,向量组(I)可用向量组(Ⅱ)线性表示.于是当a≠-1时,这两组向量可互相线性表示,即 [α
1
,α
2
,α
3
]≌[β
1
,β
2
,β
3
].
解析
转载请注明原文地址:https://jikaoti.com/ti/0FBRFFFM
0
考研数学三
相关试题推荐
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
设幂级数的收敛半径分别为R1,R2,且R1<R2,设(an+bn)x1的收敛半径为R0,则有().
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
判断级数的敛散性.
判断级数的敛散性.
设由流水线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品。销售每件合格品获利,销售每件不合格品亏损。已知销售利润T(单位:元)与销售零件的内径X有如下关系:问平均内径μ取何值时,销售一个零
设A,B为随机事件,且,令(Ⅰ)求二维随机变量(X,Y)的概率分布;(Ⅱ)求X和Y的相关系数ρXY。
设A,B为随机事件,P(A)>0,则P(B|A)=1不等价于()
设A=方程组AX=B有解但不唯一.(1)求a;(2)求可逆矩阵P,使得P-1AP为对角阵;(3)求正交阵Q,使得QTAQ为对角阵.
随机试题
胎儿淋巴囊肿的临床和声像图表现,下列哪一项不正确
X线钡餐检查显示“皮革胃”,多见于
下列关于桩板式挡土墙的描述正确的有()。
个人贷款与公司贷款是商业银行按照()划分的。
我国主要的国际客源市场可分为()
根据《中华人民共和国宪法》,下列选项符合对公民基本权利规定的是()。(2018年国家.单选13)
某产品由甲、乙两种原料混合而成,甲、乙两种原料所占比例分别为x和y。当甲的价格在60元的基础上上涨10%,乙的价格在40元的基础上下降10%时,该产品的成本保持不变,那么x和y的值分别为().
周某对刘某享有100万元的债权,履行期间应当于2020年1月届满。此后由于业务往来,刘某对周某享有30万元的债权,履行期间应当于2019年12月届满。2019年7月,周某将其对刘某的100万元债权让与给罗某,并且通知了刘某,但是罗某对刘某的债权并不知情。基
Asalways,IampleasedtobehereattheNationalPressClubformy【L1】______Speech.ThisistheseventhtimeIhavehadthe【L2
Educationistheprocessoflearningandknowing,whichisnotrestrictedtoourschooltext-books.Itisaholisticprocessan
最新回复
(
0
)