首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: (1)AB=BA: (2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: (1)AB=BA: (2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
admin
2022-04-07
79
问题
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:
(1)AB=BA:
(2)存在可逆矩阵P,使得P
-1
AP,P
-1
BP同时为对角矩阵.
选项
答案
(1)由AB=A-B得A-B-AB+E=E,(E+A)(E-B)=E, 即E-B与E+A互为逆矩阵,于是(E-B)(E+A)=E=(E+A)(E-B), 故AB=BA. (2)因为A有三个不同的特征值λ
1
,λ
2
,λ
3
,所以A可以对角化,设A的三个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
,则有A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), 于是有ABξ
i
=λ
i
Bξ
i
,i=1,2,3. 若Bξ
i
≠0,则Bξ
i
是A的属于特征值λ
i
的特征向量,又λ
i
为单根,所以有Bξ
i
=μ
i
ξ
i
; 若Bξ
i
=0,则ξ
i
是B的属于特征值0的特征向量.无论哪种情况,B都可以对角化,而且 ξ
i
是B的特征向量,因此,令P=(ξ
1
,ξ
2
,ξ
3
),则P
-1
AP,P
-1
BP同为对角阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/zqfRFFFM
0
考研数学三
相关试题推荐
[*]
求幂级数的收敛区间与和函数f(x).
设曲线y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周,得一旋转体,求此旋转体体积V(ξ);求满足(2)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出该面积.
从装有1个白球,2个黑球的罐子里有放回地取球,记这样连续取5次得样本X1,X2,X3,X4,X5。记Y=X1+X2+…+X5,求:,S2分别为样本X1,X2,…,X5的均值与方差).
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
设二维随机变量(X,Y)的概率密度为f(x,y)=一∞<x<+∞,一∞<y<+∞,求常数A及条件概率密度fY|X(y|x).
下列级数中收敛的有()
计算定积分
求由方程x2+y2-xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
随机试题
在某工程双代号网络计划中,如果以关键节点为完成节点的工作有3项,则3项工作()。
只要可燃物浓度在爆炸极限之外就是安全的。
HBsAg持续(+),HBeAg(-),抗HBe(+)或(-),提示为()
干酪性肺炎病人的痰颜色常是
用俞募配穴法治疗小儿遗尿选
项目决策管理是指()对项目的管理。
【背景资料】某一储油库工程,施工图纸已齐备,现场已完成三通一平工作,满足了工程开工的条件。该工程由银行贷款和企业自筹资金相结合,解决了资金问题,实行邀请招标发包。业主与承包单位签订的合同总工期为10个月,计300个日历天,按国家工期定额规定,该工程的定额
关税同盟形成后带来的动态效果有()。
西周末年思想家史伯说“和实生物,同则不继,以它平它谓之和,故能丰长而物归之”。这里包含的辩证法思想有()
在考生文件夹下,打开文档WORD1.docx,按照要求完成下列操作并以该文件名(WORD1.docx)保存文档。【文档开始】首届中国网罗媒体论坛在青岛开幕6月22日,首届中国网罗媒体论坛在青岛隆重开幕。来自全国近150家网罗媒体的代表聚会青岛
最新回复
(
0
)