[2007年] 设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(a)=g(a),f(b)=g(b).证明: 存在η∈(a,b),使得f(η)=g(η);

admin2019-03-30  57

问题 [2007年]  设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(a)=g(a),f(b)=g(b).证明:
存在η∈(a,b),使得f(η)=g(η);

选项

答案由题设条件易知,只需用介值定理,为此设f(x),g(x)在(a,b)内的最大值为M.由题设知,存在α∈(a,b),β∈(a,b)(不妨设α≤β),使f(α)=M=g(β). 当α=β时,取η=α=β∈(a,b),有f(η)=g(η). 当α<β时,令F(x)=f(x)=g(x),则 F(α)=f(α)-g(α)=M-g(α)≥0, F(β)=f(β)-g(β)=f(β)-M≤0. 由介值定理知,存在η∈(α,β)[*](a,b),使F(η)=0,即f(η)=g(η).

解析
转载请注明原文地址:https://jikaoti.com/ti/zjBRFFFM
0

随机试题
最新回复(0)