首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Preschoolers’ Innate Knowledge Means They Can Probably Do Algebra Child development specialists are uncovering evidence that
Preschoolers’ Innate Knowledge Means They Can Probably Do Algebra Child development specialists are uncovering evidence that
admin
2015-03-28
44
问题
Preschoolers’ Innate Knowledge Means They Can Probably Do Algebra
Child development specialists are uncovering evidence that toddlers may understand much more than we think.
[A] Give a three-year old a smart phone and she’ll likely figure out how to turn it on and operate a few simple functions. But confront her with an algebra problem and ask her to solve for x? Not likely.
[B] For decades, child developmental psychologist Jean Piaget convinced us that young, undeveloped minds couldn’t handle complex concepts because they simply weren’t experienced or mature enough yet. Piaget, in fact, believed that toddlers could not understand cause and effect, that they couldn’t think logically, and that they also couldn’t handle abstract ideas.
[C] That’s because, he argued, children learn to develop these higher skills through trial and error. But child development specialists are finding out that preschoolers without any formal education may have the capacity to understand more complex concepts than we give them credit for, such as complicated rules for operating a toy or even solving for an unknown in algebra. Some of this is due to their ability to be more open and flexible about their world than adults. But beyond that, toddlers may have the innate ability to understand abstract concepts like quantities and causality, and that’s fueling an exciting stream of experiments that reveal just how sophisticated preschoolers’ brains might be.
[D] Alison Gopnik, professor of psychology at University of California Berkeley and her team devised a way to test how well young kids understand the abstract concept of multiple causality — the idea that there may be more than one cause for a single effect. They pitted 32 preschoolers around 4 years old against 143 un-dergrads. The study centered around a toy that could be turned on by placing a single blue-colored block on the toy’s tray, but could also be activated if two blocks of different colors — orange and purple — were placed on the tray. Both the kids and the undergraduates were shown how the toy worked and then asked which blocks activated the toy.
[E] The preschoolers were adept at figuring out that the blue blocks turned on the toy, as did the purple and orange ones. The Berkeley undergraduates, however, had a harder time accepting the scenario.Their previous experience in the world, which tends to work in a single-cause-equals-single-effect way, hampered their ability to accept the unusual rules that activated they toy; they wanted to believe that it was activated either by a single color or by a combination of colors, but not both.
[F] The preschoolers’ lack of bias about causality likely contributed to their ability to learn the multiple ways to activate the toy, but the results also suggest that preschoolers really can think logically and in more complicated ways. Just because they can’t express themselves or aren’t as adept at demonstrating such knowledge, doesn’t mean they don’t have it.
[G] Researchers from Johns Hopkins University, for example, found a similar effect among preschoolers when it came to math. Previous studies showed that if you present infants with eight objects over and over until they got bored, and then showed them 16, they suddenly regained interest and sensed that things changed. "All the evidence so far leads us to believe that this is something that babies come into the world with," says Melissa Kibbe, co-author of that study.
[H] She and her colleague Lisa Feigenson wondered if that innate sense of quantity might translate into an understanding of numbers and higher math functions, including solving for unknowns — one of the foundations of algebra — which often isn’t taught until seventh or eighth grades. So they conducted a series of experiments using a cup with a fixed amount of objects that substituted for x in the equation 5 + x=17.
[I] To divert the four- and six-year olds’ attention away from Arabic numerals to quantities instead, the researchers used a puppet and a "magic" cup that contained 12 buttons. In one of the experiments, the children saw five buttons on the table. After watching the researchers add the 12 buttons from the cup, they were told there were 17 buttons on the table. In another test, the youngsters saw three piles of objects — buttons, coins or small toys — in varying amounts, and observed the researchers adding the fixed number of contents of the puppet’s cup to each.
[J] After training the kids on how the cup worked, the researchers tried to confuse them with another cup containing fewer (such as four) or more (such as 24) objects. However, the kids understood intuitively that the decoy cup contained the wrong amount of items and that a specific amount — x, the "magic" cup amount — had to be added to reach the sum. That suggested that the preschoolers had some concept of quantity. What surprised Kibbe was not just that preschoolers understood the concept of adding "more," but that they could also calibrate how much more was needed to fill in the unknown quantity.
[K] "These kids had very little formal schooling so far, but what we are finding is that when we tap into their gut sense, something we call the Approximate Number Sense (ANS), kids are able to do much more complex calculations than if we gave them numbers and letters," says Kibbe of her results. And there doesn’t seem to be any gender differences in this innate ability, at least not among the girls and boys Kibbe studied.
[L] There’s also precedent for such innate pre-learning in reading, says Jon Star, at the Harvard University Graduate School of Education. To improve reading skills, some teachers have tapped into children’s memorization skills to make the connection between words and meaning more efficient.
[M] Kibbe’s and Gopnik’s recent work may have broader implications for education, since current math curricula in schools, which focuses on teaching Arabic numerals and on solving equations, may not be ideal for nurturing the number sense that kids are born with. "There’s an exciting movement in psychology over the past decade, as we learn that students bring certain capabilities, or innate knowledge that we hadn’t thought they had before," says Star.
[N] Though it may be too early to translate such findings to the classroom, the results lay the groundwork for studying similar innate skills and how they might be better understood. ANS, for example, is one of many constructs that young children may have that could enhance their learning but that current curricula aren’t exploiting. Developmental experts are still trying to figure out how malleable these constructs are, and how much of an impact they can have on future learning. For instance, do kids who hone their ANS skills become better at algebra and calculus in high school? "We still need to figure out which constructs matter most, and which are most amenable to interventions to help children improve their learning," says Star.
[O] "The hard part is, educationally, how do you build up and upon this intuitive knowledge in a way that allows a child to capture the complexity but not hold them back," says Tina Grotzer, associate professor of education at Harvard. Tapping into a child’s still developing sense of numbers and quantities is one thing, but overloading it with too many new constructs about algebra, unknowns, and problem solving may just gum up the working memory and end up adversely affecting his learning and academic performance.
[P] Still, that doesn’t mean that these innate skills shouldn’t be explored and possibly exploited in the class-room. Preschoolers may be smarter than we think, but we still have to figure out how to give them the right opportunities in the classroom so they know what to do with that knowledge.
The fact that the toy can be activated by a single color block as well as by two blocks of different colors can not be accepted by the undergraduates.
选项
答案
E
解析
段倒数第2句提到,伯克利大学的本科生却更难接受这种方案。接着下一句指出,他们之前的社会经验让他们认为一个原因导致一个结果,这让他们难以接受这种毫无规则可言的启动玩具的方法,他们认为,某一种单一颜色或者一组相结合的颜色启动了玩具,而不是两种方法都启动了玩具。根据这两句可以推断,伯克利大学的本科生无法接受的是某一种单一颜色或一组相结合的颜色都能启动玩具。故本题是对该处信息的合理推断。
转载请注明原文地址:https://jikaoti.com/ti/xuOFFFFM
0
大学英语六级
相关试题推荐
AccordingtothemostrecentAmericanFreshmansurvey,conductedannuallybytheUniversityofCalifornia,LosAngeles,undergra
当前我国经济发展的势头良好,经济增长基本做到了速度、质量和效益的平衡。但是,我们应该清醒地看到,世界上没有一个国家的经济发展会长盛不衰,会永远保持高速度,中国也不可能例外。改革开放取得的成就是有目共睹的,但是,随着经济形势的变化,又出现了一些新的矛盾和问题
A、Itisadouble-edgedsword.B、Itisafeatureofagivenculture.C、Itisauniquegiftofhumanbeings.D、Itisaresultofb
玉雕(jadecarving)是中国最古老的雕刻品种之一。玉石历来被人们当作珍宝,在中国古代,玉被看作是美好品质和君子风范的象征。玉石加工雕琢成为精美的工艺品,称为玉雕。工艺师在制作的过程中,根据不同玉料的天然颜色和自然形状,经过精心设计、反复琢磨,才能
A、Modernpeoplehavethesameworriesasthecavemandid.B、Modernpeopleexperiencemorestressthanthecaveman.C、Thecave
A、Wearingarmweightswhileyouareswimming.B、Joggingvigorouslyinoneplaceforalongtime.C、Usingbicyclesthatrequirey
A、Hehasn’ttakenpartinadebatethisyear.B、Hebelievestheteamwaseliminatedalready.C、Hedoesn’tknowiftheteamwass
中国长城,世界奇迹之一,在1987年被联合国教科文组织(UNESCO)列为世界遗产。长城就像一条巨龙,蜿蜒曲折,横跨沙漠、草原、高山和高原,从东向西绵延约9,000公里。明长城是现存长城中保存最完整、最坚固的一段:借鉴其他朝代的经验,明长城的城墙上增设了更
TheUnitedNationsDevelopmentProgrammesaystheworldisfacingawatercrisis.Itsayseachyearmorethantwomillionchildr
AstheworldexcitedlygreetedSnuppy,thefirstcloned(克隆)dog,commentatorscelebratedourcleverness.Manyfeelproudthatour
随机试题
FX2N系列PLC编程软件的功能不包括()。
焊缝的装配间隙、零件的定位以及零件间垂直度、平行度的测量与装配都是以零件的()为依据。
下列关于东方文化和英美文化在思维方面的差异说法正确的是()
制造业企业发生的工资费用不一定都是生产费用。()
10岁小儿,曾多次患肺炎,无发绀,胸骨左缘3~4肋间Ⅲ级粗糙收缩期杂音。超声心动图显示室水平过隔血流,请指出哪一项最正确
急性持续性腹痛,阵发性加剧并伴有休克,最大可能为
有关用药或健康饮食限量A、不宜超过1gB、不宜超过2gC、不宜超过3gD、不宜超过5gE、不宜超过6g老年人痉挛性便秘1日服用羧甲基纤维素钠
下列关于消费税纳税义务发生时间的陈述,说法正确的有( )。
影响运动技能迁移的因素是()。
在四边形ABCD中,AB=AD,CB=CD,但AD≠CD,这种四边形叫半菱形,如果,AC=7,BD=4,那么这个半菱形的面积()。
最新回复
(
0
)