讨论方程axex+b=0(a>0)实根的情况.

admin2016-09-13  16

问题 讨论方程axex+b=0(a>0)实根的情况.

选项

答案令f(x)=axex+b,因为[*],求函数f(x)=axex+b的极值,并讨论极值的符号及参数b的值. fˊ(x)=aex+axex=aex(1+x), 驻点为x=-1, fˊˊ(x)=2aex+axex=aex(2+x), fˊˊ(-1)>0,所以,x=-1是函数的极小值点,极小值为f(-1)=b-[*] ①当b>[*](>0)时,函数f(x)无零点,即方程无实根; ②当b=[*](>0)时,函数f(x)有一个零点,即方程有一个实根; ③当0<b<[*]时,函数f(x)有两个不同的零点,即方程有两个不同的实根; ④当b≤0时,函数f(x)有一个零点,即方程有一个实根.

解析
转载请注明原文地址:https://jikaoti.com/ti/xnxRFFFM
0

相关试题推荐
最新回复(0)