首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f’+(0)
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f’+(0)
admin
2017-01-14
23
问题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a);
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f’(x)=A,则f’
+
(0)存在,且f’
+
(0)=A。
选项
答案
(Ⅰ)作辅助函数φ(x)=f(x)-f(a)-[*](x-a),易验证φ(x)满足:φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得至少有一点ξ∈(a,b),使φ’(ξ)=0,即 [*] 所以f(b)-f(a)=f’(ξ)(b-a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可知,存在[*](0,δ),使得 [*] 故f’
+
(0)存在,且f’
+
(0)=A。
解析
转载请注明原文地址:https://jikaoti.com/ti/xawRFFFM
0
考研数学一
相关试题推荐
某商场以每件a元的价格出售某种商品,若顾客一次购买50件以上,则超出50件的商品以每件0.8а元的优惠价出售,试将一次成交的销售收入R表示成销售量z的函数.
求下列函数的导数:
求下列递推公式(n为正整数):
行列式为f(x),则方程f(x)=0的根的个数为
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤20;
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
设随机变量X和Y都服从标准正态分布,则
由结论可知,若令φ(x)=xf(x),则φˊ(x)=f(x)+xfˊ(x).因此,只需证明φ(x)在[0,1]内某一区间上满足罗尔定理的条件.令φ(x)=xf(x),由积分中值定理可知,存在η∈(0,1/2)使[*]
已知y=x2+a与y=b㏑(1+2x)在x=1点相切(两曲线在(x0,y0)处相切是指它们在(x0,y0处有共同切线),求a,b的值.
随机试题
A、Organisingprotests.B、Actingasitsspokesman.C、Recruitingmembers.D、Savingendangeredanimals.A根据选项,可以预测本题询问某人的工作内容。男士说他在
狭义的决策专指决策者对行动方案的最终选择,即通常所说的最终【】
对于铜绿假单胞菌特性叙述正确的是
葡萄糖在合成糖原时,每加上1个葡萄糖残基需消耗
下列关于招标文件的澄清和修改的说法中,正确的有()。[2011年真题]
球罐的结构,其球壳结构形式有( )。
下列关于清算与交收的说法,正确的有()。
商业银行将其持有的未到期票据转让给其他商业银行,这种行为称为票据的()。
王某于2004年6月1日购买A商店出售的洗衣机一台,5天后使用时发现该洗衣机有问题,同时可以证实此商品为A商店未声明出售的不合格产品。根据《民法通则》的规定,王某有权向人民法院起诉A商店进行赔偿的期间为()。
甲捏造乙(某机关干部)受贿20000元的事实,并写成小字报四处散发、张贴,致使乙名誉受到很大损害。甲的行为属于()。
最新回复
(
0
)