首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0,证明:向量组α,Aα,…,Ak-1α是线性无关的.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0,证明:向量组α,Aα,…,Ak-1α是线性无关的.
admin
2020-09-25
32
问题
设A是n阶矩阵,若存在正整数k,使线性方程组A
k
x=0有解向量α,且A
k-1
α≠0,证明:向量组α,Aα,…,A
k-1
α是线性无关的.
选项
答案
设有关系式l
0
α+l
1
Aα+…+l
k-1
A
k-1
α=0,用A
k-1
左乘上式两边,有 l
0
A
k-1
α+l
1
A
k
α+…+l
k-1
A
2k-2
α=0. 由A
k
α=0知当l≥k时A
l
α=0,从而可将上式变为l
0
A
k-1
α=0.而A
k-1
α≠0,所以l
0
=0. 则关系式变为l
1
Aα+l
2
A
2
α+…+l
k-1
A
k-1
α=0,类似地,对等式两边左乘A
k-2
,则可得l
1
=0. 依此类推,可得l
2
=…=l
k-1
=0.所以α,Aα,…,A
k-1
α线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/wnaRFFFM
0
考研数学三
相关试题推荐
设A,B均为n阶矩阵,|A|=2,|B|=-3,则|2A*B-1|=_______.
设A,B均为3阶矩阵,且满足AB=2A+B,其中A=,则|B-2E|=_______.
若a1,a2,a3,β1,β2都是4维列向量,且4阶行列式|a1,a2,a3,β1|=m,|a1,a2,β2,a3|=n,则4阶行列式|a1,a2,a3,β1+β2|=
已知方程组无解,则a=_______.
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T,试讨论当a,b为何值时。(Ⅰ)β不能由α1,α2,α3线性表示;(Ⅱ)β可由α1,α2,α3唯一地线性表示,并求出表
已知线性方程组(1)a,b为何值时,方程组有解?(2)在方程组有解时,求出方程组的导出组的一个基础解系,并用它表示方程组的全部解.
(2002年)设D1是由抛物线y=2x2和x=a,x=2及y=0所围成的平面区域;D2是由抛物线y=2x2和直线y=0,x=a所围成的平面区域,其中0<a<2。(I)试求D1绕x轴旋转而成的旋转体体积V1;D2绕y轴旋转而成的旋转体积V2;
已知随机变量X的概率密度为求随机变量Y=的数学期望E(Y).
设α1,α2,α3均为线性方程组Ax=b的解,则下列向量中α1-α2,α1—2α2+α3,(α1-α3),α1+3α2—4α3是导出组Ax=0的解向量的个数为()
某保险公司对多年来的统计资料表明,在索赔户中被盗索赔户占20%,以X表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.[附表]设Φ(x)是标准正态分布函数.利用棣莫弗一拉普拉斯中心极限定理,求被盗索赔户不少
随机试题
下列哪项符合偏头痛的临床特点
用于评价药物等效性的药物动力学参数有()
A、阿普唑仑B、异戊巴比妥C、地西泮D、佐匹克隆E、苯巴比妥脂溶性较高,起效快,属于巴比妥类的镇静催眠药是()。
治理泥石流方法很多,下列措施不适合于在上游形成区进行的是()。
气体灭火系统管道末端采用防晃支架固定,支架与末端喷嘴间的距离不大于()。
外国甲企业在我国境内拥有一处房产,境内未设有经营机构和代理机构。甲企业将该房产销售给乙外资企业,销售价格为3200万元人民币,乙企业以该房产按市场价格作价3500万元投资入股丙企业,乙企业拥有丙企业8%的股份,并按所拥有的股份分担风险,分享利润。对于上述业
贵州的野生动物十分丰富,下列已列入国家一类保护动物的是()。
岩石:矿物:成分()
福州大洋百货为了庆祝春节,特举行让利百万大酬宾促销活动,在二楼打出了买300送60元的优惠活动。其中某柜台各3000元卖出两件商品,其中盈亏均为20%,则该柜台应()。
非洲大陆新闻事业发展有哪些特点?
最新回复
(
0
)