设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求A及,其中E为3阶单位矩阵.

admin2020-04-30  10

问题 设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.
求A及,其中E为3阶单位矩阵.

选项

答案因QTAQ=∧,且Q为正交矩阵,故A=Q∧QT. [*] 由A=Q∧QT得[*]所以 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/wk9RFFFM
0

最新回复(0)