设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明: 存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ).

admin2016-09-30  63

问题 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:
存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ).

选项

答案令φ(x)=e一x2f(x),因为f(a)=f(b)=0,所以φ(a)=φ(b)=0, 由罗尔定理,存在ξ∈(a,b),使得φ’(ξ)=0, 而φ(x)=e一x2[f’(x)一2xf(x)]且e一x2≠0,故f’(ξ)=2ξf(ξ).

解析
转载请注明原文地址:https://jikaoti.com/ti/utxRFFFM
0

最新回复(0)