首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(16年)设总体X的概率密度为 其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max{X1,X2,X3}. (Ⅰ)求T的概率密度; (Ⅱ)确定a,使得E(aT)=θ.
(16年)设总体X的概率密度为 其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max{X1,X2,X3}. (Ⅰ)求T的概率密度; (Ⅱ)确定a,使得E(aT)=θ.
admin
2019-05-11
29
问题
(16年)设总体X的概率密度为
其中θ∈(0,+∞)为未知参数,X
1
,X
2
,X
3
为来自总体X的简单随机样本,令T=max{X
1
,X
2
,X
3
}.
(Ⅰ)求T的概率密度;
(Ⅱ)确定a,使得E(aT)=θ.
选项
答案
(Ⅰ)先求总体X的分布函数F(χ)=∫
-∞
χ
f(t;θ)dt χ<0时,F(χ)=0;χ≥θ时,F(χ)=1; 0≤χ<θ时,F(χ)=[*] 所以,F(χ)=[*] 再求T的分布函数F
T
(t) F
T
(t)=P(T≤t)=P{max(X
1
,X
2
,X
3
)≤t} =P{X
1
≤t,X
2
≤t,X
3
≤t}=[P{X
1
≤t}]
3
=[*] 于是,T的概率密度为 [*] (Ⅱ)由题意,θ=E(αT)=αET=[*] 可见α=[*].
解析
转载请注明原文地址:https://jikaoti.com/ti/sknRFFFM
0
考研数学三
相关试题推荐
假设二维随机变量(X1,X2)的协方差矩阵为∑=,其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为p,那么行列式|∑|=0的充分必要条件是()
求.
设有20人在某11层楼的底层乘电梯上楼,电梯在途中只下不上,每个乘客在哪一层下等可能,且乘客之间相互独立,求电梯停的次数的数学期望.
一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率分别为0.1,0.2,0.3,假设各部件的状态相互独立,以X表示同时需要调整的部件数,求E(X),D(X).
设k为常数,方程kx-+1=0在(0,+∞)内恰有一根,求k的取值范围.
设级数条件收敛,则p的取值范围是______.
设X在区间[-2,2]上服从均匀分布,令Y=求:(1)Y,Z的联合分布律;(2)D(Y+Z).
(2004年)设f(x)在(一∞,+∞)内有定义,且=a,g(x)=则()
设x=rcosθ,y=rsinθ,把下列直角坐标系中的累次积分改写成极坐标系(r,θ)中的累次积分:
(1987年)设求y’.
随机试题
补肺阿胶汤的功用
A.清海丸B.逐瘀止血汤C.参茜固经冲剂D.膈下逐瘀汤E.桂枝茯苓丸
大班下学期,李老师发现幼儿普遍对小学的学习生活不够了解,一些幼儿对上小学有些担心。于是,教师准备开展“我要上小学”主题活动,希望通过多种形式的活动,增进幼儿对小学生活的了解,帮助幼儿进一步做好入小学的心理准备。请根据李老师班级情况,设计“我要上小
简述幼儿具体形象思维的主要特点。
歌剧产生于_________世纪意大利的_________。
日本脱口秀表演家金语楼曾获多项专利。有一种在打火机上装一个小抽屉代替烟灰缸的创意,在某次创意比赛中获得了大奖,备受推崇。比赛结束后,东京的一家打火机制造厂家将此创意进一步开发成产品推向市场,结果销路并不理想。以下哪项如果为真,能最好地解释上面的矛盾?
公文密级标注在眉首的右上方,保密等级分为()。
强迫障碍是以反复出现强迫观念为基本特征的一类神经症性障碍。强迫观念是以刻板形式反复进入患者意识领域的思想、表象或意向。这些思想、表象或意向对患者来说,是没有现实意义的、不必要的或多余的;患者意识到这些都是他自己的思想,很想摆脱,但又无能为力,因而感到十分苦
5名学生参加某学科竞赛,共得91分,已知每人得分各不相同,且最高是21分,则最低分是()。
Ifthisweekendisyawningaheadofyou,offeringnothingbutthesameoldroutinesandhouseholdduties,thendon’tdespair:bo
最新回复
(
0
)