设A,B为n阶正定矩阵.证明:A+B为正定矩阵.

admin2019-11-25  20

问题 设A,B为n阶正定矩阵.证明:A+B为正定矩阵.

选项

答案因为A,B正定,所以AT=A,BT=B,从而(A+B)T=A+B,即A+B为对称矩阵. 对任意的X≠0,XT(A+B)X=XTAX+XTBX,因为A,B为正定矩阵,所以XTAX>0, XTBX>0,因此XT(A+B)X>0,于是A+B为正定矩阵.

解析
转载请注明原文地址:https://jikaoti.com/ti/rXiRFFFM
0

相关试题推荐
随机试题
最新回复(0)