设A和B是两个相似的三阶矩阵,矩阵A有特征值1,矩阵B有特征值2个3,则行列式|AB+A|=______.

admin2019-02-21  19

问题 设A和B是两个相似的三阶矩阵,矩阵A有特征值1,矩阵B有特征值2个3,则行列式|AB+A|=______.

选项

答案应填144.

解析 由于A,B为相似矩阵,因此有相同的特征值λ1=1,λ2=2,λ3=3,
又  |AB+A|=|A|.|B+E|,
而|A|=λ1λ2λ3=6,  |B+E|=(λ1+1)(λ1+1)(λ1+1)=2.3.4=24,
故|AB+A|=6×24=144.
转载请注明原文地址:https://jikaoti.com/ti/r01RFFFM
0

最新回复(0)