首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明存在x0∈使得F’’(x0)=0.
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明存在x0∈使得F’’(x0)=0.
admin
2016-10-20
81
问题
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)
2
f(x),证明存在x
0
∈
使得F’’(x
0
)=0.
选项
答案
显然F(0)=[*],于是由罗尔定理知,存在[*],使得F’(x
1
)=0.又 F’(x)=2(sinx-1)f(x)+(sinx-1)
2
f’(x), [*] 对F’(x)应用罗尔定理,由于F(x)二阶可导,则存在[*],使得F’’(x*
0
)=0. 注意到F(x)以2π为周期,F’(x)与F’’(x)均为以2π为周期的周期函数,于是存在x
0
=2π+x*
0
,即[*],使得 F’’(x
0
)=F’’’(x*
0
)=0.
解析
首先,因f(x)是周期为2π的周期函数,则F(x)也必为周期函数,且周期为2π,于是只需证明存在
,使得F’’(x*
0
)=0即可.
转载请注明原文地址:https://jikaoti.com/ti/qoxRFFFM
0
考研数学三
相关试题推荐
[*]
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).如果最多一位顾客购买滚筒洗衣机的概率为0.087,那么至少两位顾客购买滚筒洗衣机的概率是多大?
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
一个自动报警器由雷达和计算机两部分组成,两部分有任何一个失灵,这个报警器就失灵,若使用100h后,雷达失灵的概率为0.1,计算机失灵的概率为0.3,若两部分失灵与否相互独立,求这个报警器使用100h而不失灵的概率.
设有直线,则L1与L2的夹角为().
设∑是空间有界闭区域Ω的整个边界曲面,u(x,y,z),v(x,y,z)∈C(2)(Ω),分别表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数,证明:
用向量法证明:三角形两边中点的连线平行于第三边,且长度等于第三边长度的一半.
证明下列不等式:
设平面薄片所占的闭区域D是由螺线ρ=2ψ上一段弧(0≤ψ≤π/2)与射线ψ=π/2所围成,它的面密度为μ(x,y)=x2+y2,求这薄片的质量.
随机试题
属于妇女保健范围的是
下列哪一表述没有反映世界贸易组织争端解决机制的特点?()。
一天晚上,甲去电影院看电影。电影开始放映后,坐在甲后一排的乙、丙二人不停地说笑、打闹。甲按捺不住,起身回头指责二人。三人发生争吵,乙、丙二人对甲大打出乎。甲情急中掏出随身携带的水果刀往前乱刺,结果刺中坐在乙旁边的观众丁,致丁重伤。甲的行为属于:()
(2011)被控对象的时间常数反映对象在阶跃信号激励下被控变量变化的快慢速度,即惯性的大小,时间常数大,则()。
旅游团在海南旅游时突遇台风,导游正确的做法有()。
影响个体吸引力最稳定的因素是()。
在实际工作中,公务员常常处于各种矛盾的“夹缝”之中。他们需要处理好与本单位上级领导、同事,外单位上级领导、同事,下级领导与群众以及各方面的关系。“关系”越多,越容易产生各种各样的问题和矛盾。对这些矛盾和问题,你将如何解决?
Bigcompaniesswallowlittleoneseveryday.Sothe【C1】______onMarch25thbyYahoo(annualrevenue,$5billion)ofSummly,aBr
Theteacheraskedusif______isinthisoffice.ThemonitoransweredthatBobandTimhadaskedforleavetoday.
Ipersonallyamoffendedbywhattheyhavetriedtodoinaverymisleadingwaywith,whatI’vesaidabouttwoofmypersonal___
最新回复
(
0
)