(I)设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]’=u’(x)v(x)+u(x)v’(x); (1I)设函数u1(x),u2(x),…,un(x)可导, f(x)=u1(x)u2(x)…un(x),写出f(x)的求导公式.

admin2016-03-26  38

问题 (I)设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]’=u’(x)v(x)+u(x)v’(x);
(1I)设函数u1(x),u2(x),…,un(x)可导, f(x)=u1(x)u2(x)…un(x),写出f(x)的求导公式.

选项

答案(I)令f(x)=u(x)v(x),由导数定义得 [*] (1I)若f(x)=u1(x)u2(x)…un(x),则f’(x)=u1’(x)u2(x)…un(x)+u1(x)u2’(x)…un(x)+…+u1(x)u2(x)…u’n(x).

解析
转载请注明原文地址:https://jikaoti.com/ti/pTxRFFFM
0

相关试题推荐
最新回复(0)