首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1, A(α1+α2)线性无关的充分必要条件是( )
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1, A(α1+α2)线性无关的充分必要条件是( )
admin
2017-01-21
23
问题
设λ
1
,λ
2
是矩阵A的两个不同的特征值,对应的特征向量分别为α
1
,α
2
,则α
1
, A(α
1
+α
2
)线性无关的充分必要条件是( )
选项
A、λ
1
≠0
B、λ
2
≠0
C、λ
1
=0
D、λ
2
=0
答案
B
解析
令k
1
α
1
+k
2
A(α
1
+α
2
)=0,则(k
1
+k
2
λ
1
)α
1
+k
2
λ
2
α
2
=0。
因为α
1
,α
2
线性无关,所以k
1
+k
2
λ
1
=0,且k
2
λ
2
=0。
当λ
2
≠0时,显然有k
1
=0,k
2
=0,此时α
1
,A(α
1
+α
2
)线性无关;反过来,若α
1
,A(α
1
+α
2
)线性无关,则必然有λ
2
≠0(否则,α
1
与A(α
1
+α
2
)=λ
1
α
1
线性相关),故应选B。
转载请注明原文地址:https://jikaoti.com/ti/nJSRFFFM
0
考研数学三
相关试题推荐
A、 B、 C、 D、 B
设X1,X2,…,Xm为来自二项分布总体B(n,p)的简单随机样本,X和S2分别为样本均值和样本方差.记统计量T=X-S2,则ET=___________.
一实习生用同一台机器接连独立地制造3个同种零件,第i个零件是不合格品的概率Pi=1/(i+1)(i=1,2,3),以X表示3个零件中合格品的个数,则P{X=2}=___________.
考虑一元二次方程x2+Bx+C=0,其中B,C分别是将一枚色子接连掷两次先后出现的点数.求该方程有实根的概率p和有重根的概率q.
利用三重积分计算下列立体Ω的体积:(1)Ω={(x,y,z)|,a>0,b>0,c>0};(2)Ω={(x,y,z)|x2+z2≤1,|x|+|y|≤1};(3)Ω={(x,y,z)|x2+y2+z2≤1,0≤y≤ax,a>0}.
计算下列第一类曲线积分:
计算,D:ε2≤x2+y2≤1,并求此积分当ε→0+时的极限.
设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记(Ⅱ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=l时,求D(T).
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料销售收入R(万元)与电台广告费用x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x1+32x2-8x1x2-2x21-10x22(1)在广告费用不限的情况
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT;(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
随机试题
患者,女性,42岁。颈粗3年,无明显伴随症状。曾于医院检查示:TgAb、TPOAb增高,未做特殊处理。1天前出现右颈部疼痛,伴低热、心悸。查体:心率100次/分,双侧甲状腺Ⅱ度肿大,质硬,表面不光滑,甲状腺右叶压痛明显。2周前有上呼吸道感染史。目前最可
免疫是指机体
患者,男,78岁,近日来出门后不识回家的路,把衣服当裤子穿,把裤子当衣服穿,丢三落四,经常忘记当前发生的事情。该疾病简捷、快速的筛查方法是()。
投标人或者其他利害关系人认为电子招标投标活动不符合有关规定的,通过()进行投诉。
关于文件名中的大小写字符,下列说法正确的是()。
下列哪项不属于现金流量表中“补充资料”的内容()
前方曹文轩一辆破旧的汽车临时停在路旁,它不知来自何方?它积了一身厚厚的尘埃。一车人,神情憔悴而漠然地望着前方。他们去哪儿?归家还是远行?然而不管是归家还是远行,都基于同一事实:他们正在路上。归家,说明他们在此之前,曾有离家之举。而远行,则是
简述王守仁的儿童教育思想。
ThetraditionalAmericanThanksgivingDaycelebration【1】to1621.【2】thatyearaspecialleastwaspreparedinPlymouth,Massachus
Victoriahaseventuallydecidedtogoona______
最新回复
(
0
)