设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1, A(α1+α2)线性无关的充分必要条件是( )

admin2017-01-21  27

问题 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1, A(α12)线性无关的充分必要条件是(     )

选项 A、λ1≠0
B、λ2≠0
C、λ1=0
D、λ2=0

答案B

解析 令k1α1+k2A(α12)=0,则(k1+k2λ1)α1+k2λ2α2=0。
因为α1,α2线性无关,所以k1+k2λ1=0,且k2λ2=0。
当λ2≠0时,显然有k1=0,k2=0,此时α1,A(α12)线性无关;反过来,若α1,A(α12)线性无关,则必然有λ2≠0(否则,α1与A(α12)=λ1α1线性相关),故应选B。
转载请注明原文地址:https://jikaoti.com/ti/nJSRFFFM
0

最新回复(0)