首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种电子器件的寿命(以小时计)T服从参数为λ的指数分布,其中λ>0未知.从这批器件中任取n只在时刻t=0时投入独立的寿命试验,试验进行到预订时间T0结束,此时有k(0<k<n)只器件失效. 求:(Ⅰ)一只器件在时间T0未失效的概率; (Ⅱ)λ的最大似然估
设某种电子器件的寿命(以小时计)T服从参数为λ的指数分布,其中λ>0未知.从这批器件中任取n只在时刻t=0时投入独立的寿命试验,试验进行到预订时间T0结束,此时有k(0<k<n)只器件失效. 求:(Ⅰ)一只器件在时间T0未失效的概率; (Ⅱ)λ的最大似然估
admin
2019-01-24
15
问题
设某种电子器件的寿命(以小时计)T服从参数为λ的指数分布,其中λ>0未知.从这批器件中任取n只在时刻t=0时投入独立的寿命试验,试验进行到预订时间T
0
结束,此时有k(0<k<n)只器件失效.
求:(Ⅰ)一只器件在时间T
0
未失效的概率;
(Ⅱ)λ的最大似然估计量.
选项
答案
(Ⅰ)记T的分布函数为F(t),则 [*] 一只器件在t=0时投入试验,则在时间T
0
以前失效的概率为P{T≤T
0
}=F(T
0
)=1
-eλT
0
,故在时间T
0
未失效的概率为 P{T>T
0
}=1-F(T
0
)=e
-λT
0
. (Ⅱ)考虑事件A={试验直至时间T
0
为止,有k只器件失效,n-k只未失效}的概率.由于各只器件的试验是相互独立的,因此事件A的概率为 L(λ)=C
k
n
(1-e
-λT
0
)
k
(e
-λT
0
)
n-k
, 这就是所求的似然函数.取对数得 ln L(λ)=lnC
k
n
+kln(1-e
-λT
0
)+(n-k)(-λT
0
). 令[*] 则ne
-λT
0
=n-k,解得λ的最大似然估计量为 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/n91RFFFM
0
考研数学一
相关试题推荐
有一大批产品,其验收方案如下,先做第一次检验,从中任取10件,经检验无次品则接收这批产品,次品数大于2,则拒收;否则做第二次检验.其做法是从中再任取5件,仅当5件无次品时接收这批产品,若产品的次品率为10%,求:这批产品能够被接收的概率.
有一大批产品,其验收方案如下,先做第一次检验,从中任取10件,经检验无次品则接收这批产品,次品数大于2,则拒收;否则做第二次检验.其做法是从中再任取5件,仅当5件无次品时接收这批产品,若产品的次品率为10%,求:这批产品经第一次检验能接收的概率.
设f(x)=(Ⅰ)求f(x)以2π为周期的傅氏级数,并指出其和函数S(x);(Ⅱ)求
改变积分次序并计算.
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,一3)T,则α2由α1,α3,α4表示的表达式为________.
(x2+xy一z)dxdy=_______,其中D由直线y=x,y=2x及x=1围成.
设总体X的概率分布为θ(0<θ<)是未知参数,用样本值3,1,3,0,3,1,2,3求θ的矩估计值和最大似然估计值·
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是().
设二阶常系数非齐次线性微分方程y’’+y’+qy=Q(x)有特解y=3e-4x+x2+3x+2,则Q(x)=________,该微分方程的通解为_________.
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和(yn}都发散,那么{xnyn}的敛散性又将如何?
随机试题
中华人民共和国第二任国家主席是()
A.清上焦火B.清相火,退虚热C.清胃火止呕D.泻肝胆实火黄连猪胆汁炒用功偏
关于X线影像放大的叙述,错误的是
下列各项中,有关会计账户与会计科目的说法错误的是()。
关于统计汇总整理质量控制的下列表述中,正确的是( )。
甲运输公司与乙保险公司签订财产保险合同,为其在用的20辆货车投保,合同中未约定纠纷管辖法院;在保险期间,其中5辆货车在执行从A地至B地的运输任务时在C地发生保险事故。因与乙保险公司就赔偿问题争执不下,甲运输公司拟提起诉讼,下列法院中,对本案有管辖权的有(
Morethan25yearsago,whenIwas15,mygrandfatherdied.Hewaskind,strong,fair,andveryfunny.WhenIwasayoungmusici
布鲁纳认为,学习的实质是()。
确定一个控件的大小的属性是()。
WriteashortessayentitledFastFoodandTraditionalChineseCooking.Youshouldwriteatleast120wordsfollowingtheoutlin
最新回复
(
0
)