首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Who would most likely send out this announcement?
Who would most likely send out this announcement?
admin
2012-04-04
19
问题
Who would most likely send out this announcement?
Thank you for using St. George Online Commercial Banking. All check processing on your account is manageable from your home computer. Your account updates several times a day, so it stays pretty current. Rejected transactions, such as checks that are turned down for non-sufficient funds, are highlighted in red. The report contains all the information necessary to identify the returns so that you can decide whether to "run" the transaction again or contact the consumer directly to follow-up.
选项
A、They are charged a fine.
B、They are highlighted in red.
C、They are forwarded to the bank.
D、They are sent back to the consumer.
答案
B
解析
转载请注明原文地址:https://jikaoti.com/ti/n07sFFFM
本试题收录于:
托业听力题库托业(TOEIC)分类
0
托业听力
托业(TOEIC)
相关试题推荐
Alexis______herCanadiandollarsforYuanRenminbibeforehertriptoBeijing.
EasyBlend5000byRXHousewaresTheEasyBlend5000istheonlyblenderyouwilleverneed.Notonlyisitgoodformakingsoup
AmericanWomeninScienceAssociationisacceptingproposalsforitsupcomingconferenceinJuly.Theconferenceisaimedatexp
Ms.Grabowskiwasassignedto______theconferencespeakersfromtheentrancetotheconventionhall.
Duetothepooreconomy,mostoftheemployeeswillputofftakingasummervacationuntilthedomesticeconomy______.
WhataretheyNOTtalkingabout?
A、 B、 C、 CWouldyouliketo…?(你想做……吗?)提议句→反问有关信息的回答
Whereistheconversationprobablytakingplace?
A、 B、 C、 AHowabout…?(…怎么样?)提议句→接受
A、 B、 C、 AWouldyouliketo…?(你想要做……吗?)提议句→用IwishIcould拒绝
随机试题
故宫旧称为________。
患者男,16岁。左小腿上段肿胀疼痛3个月余,夜间痛明显,查体:左胫骨上段肿胀明显,有压痛,可扪及约6cm×7cm质硬包块,固定,X线片显示左胫骨上段虫蚀状溶骨性破坏,骨膜反应明显,可见Codman三角,局部软组织受侵、肿胀。临床诊断考虑为
以下哪项是由负反馈调节的生理过程
严重面磨损引起颞颌关节紊乱病的主要原因是
(2013年)关于加工贸易内销货物完税价格的确定,下列说法正确的有()。
背景说明:你是宏远公司的行政秘书钟苗,下面是行政经理张明需要你完成的几项工作任务。
鲁迅笔下的阿Q,对于自己进监牢并不烦恼,而以为“惟有圈而不圆,却是他‘行状’上的一个污点”。不仅如此,鲁迅用一百多字详尽描写“阿Q立志要画得圆”却未能如愿的过程,其用心又是什么?鲁迅在《阿Q正传》中并没有解答的问题却在杂文中显示了解答的钥匙。鲁迅
目标设置理论
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式求导数f’(x);
DearMr.Cooper,ThankyouforyourMay18orderoffiveT-200printers.Unfortunately,theT-200hasbeendiscontinuedandisn
最新回复
(
0
)