首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求A的特征值与特征向量;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求A的特征值与特征向量;
admin
2019-07-16
36
问题
设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
是线性方程组Ax=0的两个解.
求A的特征值与特征向量;
选项
答案
由于矩阵A的各行元素之和均为3,所以 [*] 因为Aα
1
=0,Aα
2
=0,即 Aα
1
=0α
1
,Aα
2
=0α
2
故λ
1
=λ
2
=0是A的二重特征值,α
1
,α
2
为A的属于特征值0的两个线性无关特征向量;λ
3
=3是A的一个特征值,α
3
=(1,1,1)
T
为A的属于特征值3的特征向量. 总之,A的特征值为0,0,3.属于特征值0的全体特征向量为k
1
α
1
+k
2
α
2
(k
1
,k
2
不全为零),属于特征值3的全体特征向量为k
3
α
3
(k
3
≠0).
解析
转载请注明原文地址:https://jikaoti.com/ti/ktnRFFFM
0
考研数学三
相关试题推荐
设α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中r(B)=2.(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设α1,α2,…,αn为n个n维列向量,证明:α1,α2,…,αn线性无关的充分必要条件是
一条均匀链条挂在一个无摩擦的钉子上,链条长18m,运动开始时链条一边下垂8m,另一边下垂10m,问整个链条滑过钉子需要多长时间?
设f(x)是连续函数.若|f(x)|≤k,证明:当x≥0时,有
电话公司有300台分机,每台分机有6%的时间处于与外线通话状态,设每台分机是否处于通话状态相互独立,用中心极限定理估计至少安装多少条外线才能保证每台分机使用外线不必等候的概率不低于0.95?
设随机变量X,Y都是正态变量,且X,Y不相关,则().
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为[a2f(a)-f(1)].若求:f(x)的极值.
将函数展开成x的幂级数.
xarctan=___________.
设f(x)=∫0tanxarctant2dt,g(x)=x-sinx,当x→0时,比较这两个无穷小的关系.
随机试题
下列化合物中,不含高能磷酸键的是
男性,30岁,因急性肠梗阻频繁呕吐,出现口渴、尿少、日唇黏膜干燥、眼窝凹陷、血压偏低。该患者的脱水类型为
护理化疗患者时,检查白细胞后出现暂停治疗的指征为白细胞降至
变更权属调查的特点不包括()。
在浇筑墙柱混凝土时,在其底部应先填50~100mm厚的与混凝土成分相同的()。
联合国教科文组织于1972年公布的()报告中,明确提出了科学的人文教育目的。
黄花岗起义失败后,以文学社和共进会为主的革命党人决定把目标转向长江流域,准备在以武汉为中心的西湖地区发动一次新的武装起义,即武昌起义。下列关于武昌起义的说法,不正确的是()。
内隐社会认知的研究方法包括
Whichcountrydidthewomanvisit?
ThefirstcopyrightlawintheUnitedStateswaspassedbyCongressin1790.In1976Congressenactedthelatestcopyrightlaw,
最新回复
(
0
)