设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维 向量总可由α1,α2,…,αn线性表示.

admin2018-01-23  25

问题 设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维
向量总可由α1,α2,…,αn线性表示.

选项

答案设α1,α2,…,αn线性无关,对任意的n维向量α,因为α1,α2,…,αn,α一定线性 相关,所以α可由α1,α2,…,αn唯一线性表示,即任一n维向量总可由α1,α2,…,αn线 性表示. 反之,设任一n维向量总可由α1,α2,…,αn线性表示, [*]则e1,e2,…,en可由α1,α2,…,αn线性表示,故α1, α2,…,αn的秩不小于e1,e2,…,en的秩,而e1,e2,…,en 线性无关,所以α1,α2,…,αn的秩 一定为n,即α1,α2,…,αn线性无关.

解析
转载请注明原文地址:https://jikaoti.com/ti/khKRFFFM
0

最新回复(0)