首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可微,且f(x)dx=f(0),试证:存在点ξ∈(0,1),使得 f’(ξ)=0.
设f(x)在[0,1]上连续,在(0,1)内可微,且f(x)dx=f(0),试证:存在点ξ∈(0,1),使得 f’(ξ)=0.
admin
2017-07-26
35
问题
设f(x)在[0,1]上连续,在(0,1)内可微,且
f(x)dx=f(0),试证:存在点ξ∈(0,1),使得
f’(ξ)=0.
选项
答案
因为f(x)在[0,1]上连续,由积分中值定理,存在点c∈[[*],1],使得 [*] 又f(x)在[0,c]连续,在(0,c)内可导,且f(0)=f(c).由洛尔定理,存在点ξ∈(0,c)[*](0,1),使得f’(ξ)=0.
解析
待证结论含有导数,所以用洛尔定理证明.
证明的关键是在[0,1]内构造辅助区间[0,c],使得f(0)=f(c).点c可由已知条件和积分中值定理得到.
转载请注明原文地址:https://jikaoti.com/ti/jwSRFFFM
0
考研数学三
相关试题推荐
设A为n阶非奇异矩阵,a是n维列向量,b为常数,P=(Ⅰ)计算PQ;(Ⅱ)证明PQ可逆的充分必要条件是aTA-1a≠b.
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.求a,b的值及方程组的通解.
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
设A为n阶矩阵,对于齐次线性方程(I)An=0和(Ⅱ)An+1x=0,则必有
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率a,并用泊松分布求出a的近似值(小数点后取两位有效数字).[附表]
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=0,y’(0)=2的特解,则∫01y(x)dx=__________.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2一2x1x4+2ax2x3(a<0)通过正交变换化为标准形2y12+2y22+by32.(I)求常数a,b;(Ⅱ)求正交变换矩阵;(Ⅲ)当|X|=1时,求二次
随机试题
医德监督
正常菌群对构成生态平衡起重要作用,下面描述其生理学意义中的哪项是错误的
A.嗜酸性粒细胞增多B.淋巴细胞增多C.血红蛋白含量过高D.中性粒细胞减少E.血小板增多脾功能亢进症患者一般可见
下列有关人民检察院诉讼行为不正确的是:()
为应对国际金融危机,我国政府决定从2008年第4季度开始实施积极的财政政策和适度宽松的货币政策,用两年多时间增加4Zi亿元投资,带动生产和就业规模扩大。这表明政府购买性支出()。
企业因债权人撤销而转销无法支付的应付账款时,应按所转销的应付账款账面余额计入()。
我国实行适度宽松的货币政策,降低存款利率不利于()。
在下列查询语句中,与SELECTTABl.*FROMTABlWHEREInStr([简历],”篮球”)<>0功能等价的语句是()。
HehasbeengrantedasyluminFrance.
【B1】【B10】
最新回复
(
0
)