设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.

admin2016-10-24  31

问题 设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.

选项

答案[*] 所以f’ (1)=0.由积分中值定理得 [*] 由罗尔定理,存在x0∈(f,2)[*](1,2),使得f’(x0)=0. 令φ(x)=exf’(x),则φ(1)=cp(x0)=0, 由罗尔定理,存在ξ∈(1,x0)[*](0,2),使得φ’ (ξ)=0, 而φ’(x)=ex[f’(x)+f"(x)]且ex≠0,所以f’(ξ)+f"(ξ)=0.

解析
转载请注明原文地址:https://jikaoti.com/ti/grSRFFFM
0

最新回复(0)