设A是三阶实对称矩阵,满足A3=2A2+5A一6E,且kE+A是正定阵,则k的取值范围是________。

admin2017-12-29  36

问题 设A是三阶实对称矩阵,满足A3=2A2+5A一6E,且kE+A是正定阵,则k的取值范围是________。

选项

答案k>2

解析 根据题设条件,则有A3一2A2—5A+6E=0。设A有特征值λ,则λ满足条件λ3一2λ2一5λ+6=0,将其因式分解可得
λ3一2λ2一5λ+6=(λ一1)(λ+2)(λ一3)=0,
因此可知矩阵A的特征值分别为1,一2,3,故kE+A的特征值分别为k+1,k一2,k+3,且当k>2时,kE+A的特征值均为正数。故k>2。
转载请注明原文地址:https://jikaoti.com/ti/gOKRFFFM
0

随机试题
最新回复(0)