首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维连续型随机变量(X,Y)在区域D={(x,y)|0≤y≤x≤3-y,y≤1}上服从均匀分布,求边缘密度fX(x)及在X=x条件下,关于Y的条件概率密度.
设二维连续型随机变量(X,Y)在区域D={(x,y)|0≤y≤x≤3-y,y≤1}上服从均匀分布,求边缘密度fX(x)及在X=x条件下,关于Y的条件概率密度.
admin
2016-10-20
34
问题
设二维连续型随机变量(X,Y)在区域D={(x,y)|0≤y≤x≤3-y,y≤1}上服从均匀分布,求边缘密度f
X
(x)及在X=x条件下,关于Y的条件概率密度.
选项
答案
如图3.4所示,区域D是一个底边平行于x轴的等腰梯形,其面积S
D
=[*](1+3)×1=2,因此(X,Y)的联合概率密度为 [*] 当x≤0或x≥3时,由于f
X
(x)=0,因此条件密度f
Y|X
(y|x)不存在.注意在x≤0或x≥3时,f
Y|X
(y|x)不是零,而是不存在.
解析
如果已知(X,Y)的联合密度,求其中一个随机变量的边缘密度及条件概率密度,可直接根据公式(3.7)与(3.8)计算,为此我们应先计算(X,Y)的联合概率密度.
转载请注明原文地址:https://jikaoti.com/ti/f1xRFFFM
0
考研数学三
相关试题推荐
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件().
掷一枚骰子,观察其出现的点数,A表示“出现奇数点”,B表示“出现的点数小于5”,C表示“出现的点数是小于5的偶数”,用集合列举法表示下列事件:Ω,A,B,C,A+B,A-B,B-A,AB,AC,+B.
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
有k个坛子,每一个装有n个球,分别编号为1至n,今从每个坛子中任取一球,求m是所取的球中的最大编号的概率.
一辆飞机场的交通车载有25名乘客,途经9个站,每位乘客都等可能在9个站中任意一站下车,交通车只在有乘客下车时才停车,求下列各事件的概率:(1)交通车在第i站停车;(2)交通车在第i站和第j站至少有一站停车;(3)交通车在第i站
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
某公共汽车站每隔10min有一辆汽车到达,一位乘客到达汽车站的时间是任意的,求他等候时间不超过3min的概率.
袋中有a只黑球,b只白球,现把球一只一只摸出,求第k次摸出黑球的概率(1≤k≤a+b).
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
随机试题
在正常情况下,有少量的凝血因子或促凝物质被激活或进入血液循环,血液不会发生凝固的最主要原因是A.机体存在完整的抗凝系统,它与凝血系统保持动态平衡B.血液中抗凝物质增多C.血管壁的完整性D.纤溶激活物增多E.神经体液的调节作用
葡萄胎最可靠的辅助诊断是()
A.单向扩散法B.双向扩散试验C.对流免疫电泳D.免疫电泳E.火箭免疫电泳实质上是将双向免疫扩散与电泳相结合,在直流电场中加速定向扩散的双向免疫扩散技术
日本血吸虫成虫寄生于人体的
关于伸出屋面管道的防水构造要求,下列叙述正确的是()。
某工程单代号网络图如下,说法正确的是( )。
一般资料:女,22岁,大一学生。案例介绍:求助者是一名大一新生,开学三个月以来,不爱和同学讲话,一说话就会脸红。最近一段时间更加严重,有时见到同学就会害羞,脸红,不敢注视对方的眼睛,平时几乎不与同学来往,也不参加集体活动。求助者希望自己能像其他同
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
“十恶”正式人律是在()
A、Visitingacompany.B、Meetingwiththenewmanager.C、Lookingforthemeetingroom.D、Showinganewcomeraround.C本题询问男士正在做什么。
最新回复
(
0
)