在一个正方形内画中、小两个正方形,使三个正方形具有公共顶点,这样大正方形被分割成了正方形区域甲和L形区域乙、丙。已知三块区域甲、乙、丙的周长之比为4:5:7,并且区域丙的面积为48,求大正方形的面积。( )

admin2018-03-05  30

问题 在一个正方形内画中、小两个正方形,使三个正方形具有公共顶点,这样大正方形被分割成了正方形区域甲和L形区域乙、丙。已知三块区域甲、乙、丙的周长之比为4:5:7,并且区域丙的面积为48,求大正方形的面积。(    )

选项 A、96
B、98
C、200
D、102

答案B

解析 由题干所给条件可知:小、中、大三个正方形边长比为4:5:7可分别设边长为4、5、7a,则(7a)2一(5a)2=48,解之可得a2=2,故大正方形面积为:7a×7a=49×2=98。故答案为B选项。
转载请注明原文地址:https://jikaoti.com/ti/eiYpFFFM
本试题收录于: 行测题库国家公务员分类
0

相关试题推荐
随机试题
最新回复(0)