首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32. 求A-1的特征值并判断A-1是否可对角化.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32. 求A-1的特征值并判断A-1是否可对角化.
admin
2018-01-23
30
问题
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A
*
)
2
-4E的特征值为0,5,32.
求A
-1
的特征值并判断A
-1
是否可对角化.
选项
答案
设A的三个特征值为λ
1
,λ
2
,λ
3
,因为B=(A
*
)
2
-4E的三个特征值为0,5,32,所以 (A
*
)
2
的三个特征值为4,9,36,于是A
*
的三个特征值为2,3,6. 又因为|A
*
|=36=|A|
3-1
,所以|A|=6. [*]得λ
1
=3,λ
2
=2,λ
3
=1, 由于一对逆矩阵的特征值互为倒数,所以A
-1
的特征值为[*] 因为A
-1
的特征值都是单值,所以A
-1
可以相似对角化.
解析
转载请注明原文地址:https://jikaoti.com/ti/ehKRFFFM
0
考研数学三
相关试题推荐
计算下列n阶行列式:(其中未写出的元素均为0,下同)
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则∣B∣=_______
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1讨论f’(x)在(一∞,+∞)上的连续性.
设周期函数f(x)在(一∞,+∞)内可导,周期为4,又,则曲线y=f(x)在点(5,f(5))处的切线斜率为
设f(x)、g(x)在区间[一a,a](a>0)上连续.g(x)为偶函数,且f(x)满足条件f(x)+f(一x)=A(A为常数)(1)证明(2)利用(1)的结论计算定积分
证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).
设矩阵A的伴随矩阵矩阵B满足关系式.ABA-1=BA-1+3E,求矩阵B.
已知3阶矩阵A与3维向量x,使得向量组x,Ax,A2x线性无关.且满足A3x=3Ax一2A2x.计算行列式∣A+E∣.
就a,b的不同取值情况讨论方程组何时无解、何时只有唯一解、何时有无数个解?在有无数个解时求其通解.
设A是3阶实对称矩阵,λ1,λ2,λ3是A的三个特征值,且满足a≥λ1≥λ2≥λ3≥6,若A~μE是正定阵,则参数μ应满足()
随机试题
Themetalswhichwefindintheearth______iron,leadandcopper.
A.残损B.残疾C.残障D.精神残疾E.肢体残疾按照ICIDN分类法,残疾较严重,造成了功能能力和活动的丧失,患者不能以正常的行为、方式和范围进行日常的生活活动和其他活动者应属
女,50岁,掌指和腕关节反复肿痛2年余,近1个月病情加重,晨起时出现关节僵硬,活动后可缓解。首先考虑的诊断是
A.嗜肝DNA病毒科,血清中可查出3种形态的病毒颗粒B.小RNA病毒科,病毒为球形正二十面体,病毒颗粒物包膜C.无包膜线状单股正链RNA病毒,呈球形,核衣壳二十面体立体对称D.卫星病毒科,是一种缺陷病毒,须在其他嗜肝DNA病毒辅助下才能复制增殖E.
A.抗疟药B.抗生素C.糖皮质激素D.免疫抑制剂E.水杨酸制剂
A、乙醇提取,正丁醇萃取法B、碱水提取法C、吉拉尔试剂法D、中性醋酸铅沉淀法E、碱性醋酸铅沉淀法土当归酸的提取制备可采用
石料公司与建材公司贷款纠纷一案,经人民法院主持调解,双方达成调解协议,建材公司应当在调解书生效后7日内向石料公司支付所拖欠的货款210万元,其余的责任双方不再互相追究。该调解书经过双方签收后,即产生以下的效力:()
张某是甲期货公司的客户。甲期货公司因风险控制不力致使保证金出现缺口,申请使用期货投资者保障基金。张某保证金损失15万元。张某可能得到期货投资者保障基金补偿的最大金额为()万元。
根据劳动合同法律制度的规定,劳动者对劳动争议的终局裁决不服的,可以自收到仲裁裁决书之日起15日内向人民法院提起诉讼。()
自然界中每种动物都有自己的独特之处,作为电影艺术的动物更强调个性。正如电影一贯塑造典型人物形象一样,以动物为主角的影片在_________动物充满神秘色彩的生活的同时,格外注重突出不同种类中每个动物的性格特征,_________地刻画典型的动物形象。依次填
最新回复
(
0
)