首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是m×n矩阵,m<n.证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
已知A是m×n矩阵,m<n.证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
admin
2016-09-19
46
问题
已知A是m×n矩阵,m<n.证明:AA
T
是对称阵,并且AA
T
正定的充要条件是r(A)=m.
选项
答案
由(AA
T
)
T
=(A
T
)
T
A
T
=AA
T
,所以AA
T
是对称阵. 必要性 若AA
T
正定,r(AA
T
)=m≤r(A),又r(A
m×n
)≤m,故r(A)=m. 充分性 若r(A)=m,则齐次方程组A
T
X=0只有零解,故对任意X≠0,均有A
T
X≠0,故 X
T
AA
T
X=(A
T
X)
T
(A
T
X)>0, 即AA
T
正定.
解析
转载请注明原文地址:https://jikaoti.com/ti/edxRFFFM
0
考研数学三
相关试题推荐
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
一袋中装有a个黑球,b个白球.先后两次从袋中各取一球(不放回).(1)已知第一次取出的是黑球,求第二次取出的仍是黑球的概率;(2)已知第二次取出的是黑球,求第一次取出的也是黑球的概率;(3)已知取出的两个球中有一个是黑球,求另
二次型f(x1,x2,x3)=x12+2x1x2+2x2x3的秩r及正惯性指数p分别为().
求下列函数在指定区间上的最大值、最小值:
(1)证明三个向量共面的充要条件是其中一个向量可以表示为另两个向量的线性组合.(2)设a=(ax,ay,az),b=(b,by,bz),且a×b≠0,证明:过点Mo(x,yo,zo),并且以a×b为法向的平面具有如下形式的参数方程:
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:A2.
设二随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y与V=X-Y不相关的充分必要条件为().
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是().
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{|x|<x}=α,则x等于().
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
随机试题
如果要将3KB的纯文本块存入一个字段,应选用的字段类型是()。
SLE特征性表现是
男性,40岁,头痛、头晕1年,1周来加重伴心悸、乏力、鼻出血及牙龈出血来诊。查体:血压170/110mmHg,皮肤黏膜苍白,Hb65g/L,PLT148×109/L,尿蛋白(+++),尿红细胞3~5个/HP,BUN38mmol/L,Scr887μmol/L
中药养护技术包括
在进行国民经济评价时,()不列入项目的费用或收益。
一般来说,注册会计师最后形成的审计报告的类型为______、______、______、______四种。
艺术欣赏作为一种创造性的精神活动,其心理过程大体可分为________、________、________和心境共鸣四个阶段。
统一考试的组织者既可以是______,也可以是社会中的民间组织。
Americansbelievethateducationis______.Avarietyo{extracurricularactivitiesareaddedinAmericanschools______.
Whatcausesearthquakes?Theearthisformedoflayers.Thesurfaceoftheearth,about100kilometersthick,ismadeoflargep
最新回复
(
0
)