首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量β=(a1,a2,a3,a4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,-1,-3)T,α4=(0,0,3,3)T线性表出。 (Ⅰ)求a1,a2,a3,a4应满足的条件; (Ⅱ)求向量组α1,α2,α3
已知向量β=(a1,a2,a3,a4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,-1,-3)T,α4=(0,0,3,3)T线性表出。 (Ⅰ)求a1,a2,a3,a4应满足的条件; (Ⅱ)求向量组α1,α2,α3
admin
2018-01-26
28
问题
已知向量β=(a
1
,a
2
,a
3
,a
4
)
T
可以由α
1
=(1,0,0,1)
T
,α
2
=(1,1,0,0)
T
,α
3
=(0,2,-1,-3)
T
,α
4
=(0,0,3,3)
T
线性表出。
(Ⅰ)求a
1
,a
2
,a
3
,a
4
应满足的条件;
(Ⅱ)求向量组α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并将其余向量用该极大线性无关组线性表出;
(Ⅲ)把向量β分别用α
1
,α
2
,α
3
,α
4
和它的极大线性无关组线性表出。
选项
答案
(Ⅰ)β可由α
1
,α
2
,α
3
,α
4
线性表示,即方程组(1)x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β有解,对增广矩阵作初等行变换,有 [*] 所以向量β可以由α
1
,α
2
,α
3
,α
4
线性表出的充分必要条件是:a
1
-a
2
+a
3
-a
4
=0。 (Ⅱ)由(Ⅰ)初等变换矩阵知,向量组α
1
,α
2
,α
3
,α
4
的极大线性无关组是α
1
,α
2
,α
3
,且 α
4
=-6α
1
+6α
2
-3α
3
(2) (Ⅲ)方程组(1)的通解是 x
1
=a
1
-a
2
-2a
3
+6t,x
2
=a
2
+2a
3
-6t, x
3
=3t-a
3
,x
4
=t,其中t为任意常数, 所以β=(a
1
-a
2
-2a
3
+6t)α
1
+(a
2
+2a
3
-6t)α
2
+(3t-a
3
)α
3
+tα
4
,其中t为任意常数。 把(2)式代入,得 β=(a
1
-a
2
-2a
3
)α
1
+(a
2
+2a
3
)a
2
-a
3
α
3
。
解析
转载请注明原文地址:https://jikaoti.com/ti/eQVRFFFM
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续且单调增加,证明:
求由方程x2+y3一xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
设p(x),g(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶线性非齐次方程y’’+p(x)y’+q(x)y=f(x)①的3个解,且则式①的通解为__________.
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λs,λ1,…,λ2,使(k1+λ1)α1+(k2+λ2)α2+…+(k2+λ1)β1+(k1一λ1)β1+…+(ks一λs)βs=0,则
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
设矩阵有三个线性无关特征向量,λ=2是A的二重特征值,试求可逆阵P使得P-1AP=A,A是对角阵.
设随机变量X与Y相互独立,且都服从参数为1的指数分布,则随机变量的概率密度为__________.
已知线性方程组方程组有解时,求出方程组的全部解.
设函数f(x)在x=0处连续,下列命题错误的是
n阶行列式=________.
随机试题
关于计算机网络协议要素的说法正确的是________。
关于Word2010的视图,________视图以图书的分栏样式显示,使用起来最接近于像平时读书一样的效果。
AVM、AVF及动脉瘤等血管性疾病的介入栓塞治疗术,最广泛应用于
挂线法适用于切开法适用于
《中华人民共和国环境保护法》规定,排放污染物的企业事业单位,应当建立(),明确单位负责人和相关人员的责任。
空调风管多采用()风管。
根据《合同法》的规定,下列关于要约和承诺的表述中正确的是()。
依据税法规定从事生产经营的纳税人的财务、会计制度或者财务、会计处理办法,应当报送税务机关()。
资本主义与社会主义的根本区别在于()。
Youshouldspendabout20minutesonQuestions1-13,whicharebasedonReadingPassage1below.TheRufo
最新回复
(
0
)