设x与y,均大于0且x≠y.证明:

admin2018-07-26  21

问题 设x与y,均大于0且x≠y.证明:

选项

答案不妨认为y>x>0(因若x>y>0,则变换所给不等式左边的x与y,由行列式的性质知,左边的值不变),则 [*] 由柯西中值定理知,存在ξ∈(x,y)使上式[*] 记f(u)=eu一ueu(u>0),有f(0)=1,f'(u)=一ueu<0,所以当u>0时,f(u)<1,从而知eξ一ξeξ<1.得证.

解析
转载请注明原文地址:https://jikaoti.com/ti/dl2RFFFM
0

相关试题推荐
最新回复(0)