首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n一3,证明η1,η2,η3为AX=0的一个基础解系.
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n一3,证明η1,η2,η3为AX=0的一个基础解系.
admin
2017-08-07
28
问题
设η
1
,η
2
,η
3
为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η
1
,η
2
,η
3
线性表示,并且r(A)=n一3,证明η
1
,η
2
,η
3
为AX=0的一个基础解系.
选项
答案
因为r(A)=n一3,所以AX=0的基础解系包含3个解.设γ
1
,γ
2
,γ
3
是AX=0的一个基础解系,则条件说明γ
1
,γ
2
,γ
3
可以用η
1
,η
2
,η
3
线性表示.于是有下面的关于秩的关系式: 3=r(γ
1
,γ
2
,γ
3
)≤r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
)≤3,从而 r(γ
1
,γ
2
,γ
3
) =r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
) =r(η
1
,η
2
,η
3
),这说明η
1
,η
2
,η
3
和γ
1
,γ
2
,γ
3
等价,从而η
1
,η
2
,η
3
也都是AX=0的解;又r(η
1
,η
2
,η
3
)=3,即η
1
,η
2
,η
3
线性无关,因此是AX=0的一个基础解系.
解析
转载请注明原文地址:https://jikaoti.com/ti/dZVRFFFM
0
考研数学一
相关试题推荐
(2009年试题,17)椭球面S1是椭圆绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕轴旋转而成.求S1及S2的方程;
(2002年试题,六)设函数f(x)在(一∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d)记证明曲线积分,与路径L无关;
(2011年试题,19)已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,,其中D={(x,y)10≤x≤1,0≤y≤1},计算二重积分
(2007年试题,23)设二维随机变量(X,Y)的概率密度为求Z=X+Y的概率密度.
(2006年试题,22)设随机变量X的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数.求
(2004年试题,三)设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
(2003年试题,十二)设总体X的概率密度为其中θ>0是未知参数,从总体x中抽取简单随机样本X1,X2,…,Xn,记θ=min(X1,X2,…,Xn)如果用作为θ的估计量,讨论它是否具有无偏性.
(1998年试题,十一)设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
从学校乘汽车到火车站的途中有三个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,且遇到红灯的概率为.设X表示途中遇到红灯的次数,则E(X)=________.
随机试题
中共中央作出决定,废除人民公社,建立乡(镇)政府作为基层政权,是在
患者,男,32岁,患甲型肝炎3年,目前身目俱黄,黄色晦暗,脘腹胀闷,神疲畏寒,口淡不渴,纳减便溏。苔白腻,脉沉迟。其证型是
成年人口服阿托品一次最大量为
男,40岁。从三楼跌下,左6、7、8肋骨骨折,脾破裂、肠破裂。入院时精神紧张,T38.5℃,面色苍白,肢端冰冷,脉搏细速,血压90/70mmHg,尿量减少。病人失血量至少为
下列关于银行市场细分作用的表述,错误的是()。
下列说法中正确的是()。
美国心理学会在1974年发行的《教育与心理测量之标准》一书中将效度分为几个大类:即()。
越权:指领导者插手管超越其法定职务权力范围之内的事。下列不属于越权的一项是()。
关于因特网中的主机和路由器,以下说法正确的是()。I.主机通常需要实现TCP协议Ⅱ.路由器必须实现TCP协议Ⅲ.主机必须实现IP协议Ⅳ.路由器必须实现IP协议
目前,在市场上销售的微型计算机中,标准配置的输入设备是
最新回复
(
0
)