首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证: (Ⅰ)在开区间(a,b)内g(x)≠0; (Ⅱ)在开区间(a,b)内至少存在一点ξ,使
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证: (Ⅰ)在开区间(a,b)内g(x)≠0; (Ⅱ)在开区间(a,b)内至少存在一点ξ,使
admin
2019-01-23
23
问题
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:
(Ⅰ)在开区间(a,b)内g(x)≠0;
(Ⅱ)在开区间(a,b)内至少存在一点ξ,使
选项
答案
(Ⅰ)利用反证法。假设存在c∈(a,b),使得g(c)=0,则对g(x)在[a,c]和[c,b]上分别应用罗尔定理,可知存在ξ
1
∈(a,c)和ξ
2
∈(c,b),使得g’(ξ
1
)=g’(ξ
2
)=0成立。 再对g’(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,可知存在ξ
1
∈(ξ
1
,ξ
2
),使得g’’(ξ
3
)=0成立,这与题设条件g’’(x)≠0矛盾,因此在开区间(a,b)内,g(x)≠0。 (Ⅱ)构造函数F(x)=f(x)g’(x)-g(x)f’(x),由题设条件得函数F(x)在区间[a,b]上是连续的,在区间(a,b)上是可导的,且满足F(a)=F(b)=0。根据罗尔定理可知,存在点ξ∈(a,b),使得F’(ξ)=0。即 f(ξ)g’’(ξ)-f’’(ξ)g(ξ)=0, 因此可得 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/dP1RFFFM
0
考研数学一
相关试题推荐
设都是来自正态总体N(μ,σ2)的容量为n的两个相互独立的样本均值,试确定n,使得两个样本均值之差的绝对值超过σ的概率大约为0.01.
设X1,X2,…,Xn,…相互独立且都服从参数为λ(λ>0)的泊松分布,则当n一∞时以(x)为极限的是
求下列曲面积分(z+1)dxdy+xydzdx,其中为圆柱面x2+y2=a2上x≥0,0≤z≤1部分,法向量与x轴正向成锐角,为Oxy平面上半圆域x2+y2≤a2,x≥0部分,法向量与z轴正向相反.
设A是n阶正定矩阵,证明|A+2E|>2n.
求下列微分方程的通解或特解:(I)一4y=4x2,y(0)=,y’(0)=2;(Ⅱ)+2y=e—xcosx.
求[φ(x)-1]f(t)dt,其中f(t)为已知的连续函数,φ(x)为已知的可微函数.
设某网络服务器首次失效时间服从E(λ),现随机购得4台,求下列事件的概率:(I)事件A:至少有一台的寿命(首次失效时间)等于此类服务器期望寿命;(Ⅱ)事件B:有且仅有一台寿命小于此类服务器期望寿命.
设f(x)=(I)若f(x)处处连续,求a,b的值;(II)若a,b不是(I)中求出的值时f(x)有何间断点,并指出它的类型.
求微分方程y’’+2y’一3y=(2x+1)ex的通解.
设f(x)在x=0处连续,求极限f(x2+y2+z2)dr,其中Ω:≤z≤.
随机试题
颈椎病包括哪些分型
患者多食,大便每日2~3次。查体,血压140/60mmHg(18.62/7.98kPa),双眼突出,心律不齐,脉搏短绌。应首先考虑的是
某项目经理部质检员对临空高度在24m以下的室外楼梯设置防护栏杆进行检查,下列符合规范规定的数据有()。
实行监理的建设工程,允许建筑材料、建筑构配件和设备在工程上使用或者安装的必要前提是()。
关于外商投资企业和外国企业取得的下列所得,可不计入应纳税所得额的是()。
现有可逆反应A(g)+2B(g)nC(g);△H<0。在相同温度,不同压强时,A的转化率跟反应时间(t)的关系如图2,下列结论正确的是()。
技术突破降低了生产电脑芯片的成本。运用供求图,说明这种突破对以下市场均衡价格和数量的影响。(A.电脑市场;B.电脑软件市场)
Sincethelineageofinvestigativejournalismismostdirectlytraceabletotheprogressiveeraoftheearly1900’s,itisnots
Laurelleavesarestillanemblemofvictory.
Anarrowingofyourinterestsisimpliedinalmostanytransitionfromastudyenvironmenttomanagerialorprofessionalwork.
最新回复
(
0
)