首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组(Ⅰ)及方程组(Ⅱ)的通解为 k1[-1,1,1,0]T+k2[2,-1,0,1]T+[-2,-3,0,0]T. 求方程组(Ⅰ),(Ⅱ)的公共解.
已知方程组(Ⅰ)及方程组(Ⅱ)的通解为 k1[-1,1,1,0]T+k2[2,-1,0,1]T+[-2,-3,0,0]T. 求方程组(Ⅰ),(Ⅱ)的公共解.
admin
2016-09-19
78
问题
已知方程组(Ⅰ)
及方程组(Ⅱ)的通解为
k
1
[-1,1,1,0]
T
+k
2
[2,-1,0,1]
T
+[-2,-3,0,0]
T
.
求方程组(Ⅰ),(Ⅱ)的公共解.
选项
答案
将方程组(Ⅱ)的通解 k
1
[-1,1,1,0]
T
+k
2
[2,-1,0,1]
T
+[-2,-3,0,0]
T
=[-2-k
1
+2k
2
,-3+k
1
-k
2
,k
1
,k
2
]
T
, 代入方程组(Ⅱ),得 [*] 化简得 k
1
=2k
2
+6. 将上述关系式代入(Ⅱ)的通解,得方程组(Ⅰ),(Ⅱ)的公共解为: [-2-(2k
2
+6)+2k
2
,-3+2k
2
+6-k
2
,2k
2
+6,k
2
]
T
=[-8,k
2
+3,2k
2
+6,k
2
]
T
.
解析
转载请注明原文地址:https://jikaoti.com/ti/czxRFFFM
0
考研数学三
相关试题推荐
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件().
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
设β,α1,α2线性相关,β,α2,α3线性无关,则().
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
设P(x1,y1)是椭圆外的一点,若Q(x2,y2)是椭圆上离P最近的一点,证明PQ是椭圆的法线.
设F(x+z,y+z)可微分,求由方程F(x+z,y+z)-1/2(x2+y2+z2)=2确定的函数z=z(x.y)的微分出与偏导数
下列反常积分是否收敛?如果收敛求出它的值:
设随机变量X,Y相互独立,它们的分布函数为FX(x),Fy(y),则Z=min(X,Y)的分布函数为().
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为_______.
随机试题
阅读《石崇与王恺争豪》全文,回答文后问题。石崇与王恺争豪,并穷绮丽以饰舆服。武帝,恺之甥也,每助恺。尝以一珊瑚树高二尺许赐恺,枝柯扶疏,世军其比。恺以示崇,崇视讫,以铁如意击之,应手而碎。恺既惋惜,又以为疾己之宝,声色甚厉。崇曰:“不足恨,今还卿
A.上鼻道B.中鼻道C.下鼻道D.蝶筛隐窝E.筛漏斗蝶窦开口于
为了研究某电动牙刷对菌斑控制的效果,抽取30人使用该电动牙刷,1个月后进行临床评价。该研究方法是
关于基本医疗保险错误的是()
建筑工程中,常用于网格测量距离的钢尺长度有()。
采用工程量清单报价,下列计算公式正确的是( )。
李明:“目前我国已经具备了开征遗产税的条件。我国已经有一大批人进入了高收入阶层。遗产税的开征有了雄厚的经济基础,我国的基尼系数已经超过0.4的国际警戒线,社会的贫富差距在逐渐加大。这对遗产税的开征提出了迫切的需求。”张涛:“我国目前还不具备开征遗产税的条件
基因能控制生物的性状,转基因技术是将一种生物的基因转入另一种生物中,使被转入基因的生物产生人类所需要的性状。这种技术自产生之日起就备受争议。公众最关心转基因食品的安全性:这类食品是否对人有毒?是否会引起过敏?一位专家断言:转基因食品是安全的,司放心食用。以
ISO9000族标准中的位置,它是计算机软件机构实施(3)的(4)标准,由于(5)标准本来是针对传统的制造业制定的,而软件业又有许多不同于制造业的特必(6)起了桥梁作用。(7)将整个软件生产周期分成17个过程,并且对每一个过程按“过程—活动—任务”的三个
A、40B、160C、80D、20D
最新回复
(
0
)