首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:若A为m×n矩阵,B为n×p矩阵,则有r(AB)≥r(A)+r(B)一n.特别地,当AB=O时,有r(A)+r(B)≤n.
证明:若A为m×n矩阵,B为n×p矩阵,则有r(AB)≥r(A)+r(B)一n.特别地,当AB=O时,有r(A)+r(B)≤n.
admin
2015-08-17
52
问题
证明:若A为m×n矩阵,B为n×p矩阵,则有r(AB)≥r(A)+r(B)一n.特别地,当AB=O时,有r(A)+r(B)≤n.
选项
答案
注意到[*]当B有一个t
1
阶子式不为0,A有一个t
2
阶子式不为0时,[*]一定有一个t
1
+t
2
阶子式不为O,因此[*]故r(AB)≥r(A)+r(B)-n.特别地,当AB=O时,有r(AB)=0→r(A)+r(B)≤n,
解析
转载请注明原文地址:https://jikaoti.com/ti/cqPRFFFM
0
考研数学一
相关试题推荐
求微分方程y"+4y’+4y=eax的通解.
求微分方程y"-y’-6y=0的通解.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设fn(χ)=Cn1cosχ-Cn2cos2χ+…+(-1)n-1Cnncosnχ,证明:对任意自然数n,方程fn(χ)=在区间(0,)内有且仅有一个根.
设f(x)在x0处n阶可导,且f(m)(x0)=0(m=1,2,…,n一1),f(n)(x0)≠0(n>2),证明:当n为奇数时,(x,f(x0))为拐点.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
设向量组α1=(1,3,2,0)T,α2=(7,0,14,3)T,α3=(2,一1,0,1)T,α4=(5,1,6,2)T,α5=(2,一1,4,1)T,求该向量组的秩和一个极大线性无关组,并把不是极大线性无关组的向量用此极大线性无关组线性表示.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα2,…,Ak-1α是线性无关的.
求A=的特征值和特征向量.
求微分方程xy’=yln的通解.
随机试题
患儿,男,1岁。出现烦躁、啼哭1天,1小时前出现血便。行空气灌肠检查如图。对该病的描述正确的是
具有抗早孕作用的药物是( )具有抗催乳素作用的药物是( )
传染性非典型肺炎是我国法定传染病,属于乙类传染病。()
下列属于政府采购的组织模式的有()。
已经登记的记账凭证可以直接修改。()
ABC公司研制成功一台新产品,现在需要决定是否大规模投产,有关资料如下:(1)公司的销售部门预计,如果每台定价3万元,销售量每年可以达到10000台;销售量不会逐年上升,但价格可以每年提高2%。生产部门预计,变动制造成本每台2.1万元,每年增加2%;不含
最有利市场,是指在考虑交易费用和运输费用后,能够以最高金额出售相关资产或者以最低金额转移相关负债的市场。其中,交易费用是指()。
________wasthegreatestEnglishnovelistofCriticalRealisminthe19thcentury.
请根据以下各小题的要求设计VisualBasic应用程序(包括界面和代码)。(1)在名称为Form1的窗体上画一个名称为Pic的图片框,通过属性窗口将考生文件夹下的文件Tu1-1.jpg添加到图片框,然后编写适当的事件过程。运行程序时,单击窗体,在图片
A、Achocolatechipmaker.B、Abigrealestateagent.C、Acookiefactory.D、Atalentagency.D短文一开始说,Amos本来是WilliamMorris公司的一个tal
最新回复
(
0
)