首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设fn(x)=x+x2+…+xn(n≥2).证明:方程fn(x)=1有唯一的正根xn;
设fn(x)=x+x2+…+xn(n≥2).证明:方程fn(x)=1有唯一的正根xn;
admin
2022-10-09
35
问题
设f
n
(x)=x+x
2
+…+x
n
(n≥2).证明:方程f
n
(x)=1有唯一的正根x
n
;
选项
答案
令φ
n
(x)=f
n
(x)-1,因为φ
n
(0)=-1<0,φ
n
(1)=n-1>0,所以φ
n
(x)在(0,1)∈(0,+∞)内有一个零点,即方程f
n
(x)=1在(0,+∞)内有一个根,因为φ’
n
(x)=1+2x+…+nx
n-1
>0,所以φ
n
(x)在(0,+∞)内单调增加,所以φ
n
(x)在(0,+∞)内的零点唯一,所以方程f
n
(x)=1在(0,+∞)内有唯一正根,记为x
n
.
解析
转载请注明原文地址:https://jikaoti.com/ti/cYfRFFFM
0
考研数学三
相关试题推荐
已知x≥0时,g(x)可导,ln(1+x)是g(x)的一个原函数,且求
求
设随机变量X关于随机变量Y的条件概率密度为而Y的概率密度为求(X,Y)的概率密度f(x,y);
设X1和X2是两个相互独立的连续型随机变量,其概率密度分别为f1(x)和fZ(x),分布函数分别为F1(x)和F2(x),则下列说法正确的是(),
设二维随机变量(X,Y)的分布函数为则常数A和B的值依次为()
设随机变量(X,Y)的分布函数为F(x,y),则(Y,X)的分布函数G(x,y)为()
已知y1=3,y2=3+x2,y3=3+x2+ex都是微分方程(x2-2x)y"-(x2-2)y′+(2x-2)y=6x-6的解,求此方程的通解.
(1)证明当|x|充分小时,不等式0≤tan2x-x2≤x4成立;(2)设求
设f(x)为二阶连续可导,且,证明级数绝对收敛.
设y=f(x)二阶可导,f’(x)≠0,它的函数是x=φ(y),又f(0)=1,f’(0)=,f’’(0)=-1,则=_________________________。
随机试题
SouthAmericaLocatedmostly(most)inthesouthernhalfoftheearth,SouthAmericaisavery【C1】________(interest)contin
女性,25岁,2个月来时有心悸,易出汗,体重减轻约3kg。查体:BP126/68mmHg,中等体型,皮肤微潮,双手轻度震颤,无突眼,甲状腺Ⅰ度肿大,未闻及血管杂音,心率94次/分,律齐,为确诊,应做的检查是
孕妇,24岁,8小时前顺产一正常女婴。对婴儿提供护理措施,下列说法不正确的是
(2016年)案例:自然人甲与乙订立借款合同,其中约定甲将自己的一辆汽车作为担保物让与给乙。借款合同订立后,甲向乙交付了汽车并办理了车辆的登记过户手续。乙向甲提供了约定的50万元借款。一个月后,乙与丙公司签订买卖合同,将该汽车卖给对前述事实不知
国有资本经营预算按()单独编制。
第四次咨询:2016年1月26日咨询过程:求助者:上一次您说我的不合理的信念使我产生了不良情绪,我也确实认识到我的情绪问题应该由我自己负责。但我还是想不通,为什么我的某些信念是不合理的,比如说,我认为我对我丈夫忠诚,他就必须也对我忠诚,这难道不对吗?
西安事变和平解决,其重要作用是什么?()
在传销活动中,甲某是乙某、丙某之子丁某的下线。在国家明令禁止传销后,甲某多次找丁某退还传销款未果。某日甲某又到乙某家找丁某退款,丁某不在家,甲某要求乙某替其子丁某偿还欠款,乙某以传销退款一事与己无关为由拒绝。甲某从乙某家拿出一把菜刀,持刀向乙某要钱。遭到乙
依据科学社会主义的基本原则,在生产资料公有制基础上组织社会主义生产的根本目的是()
Psychologistshavemanytheoriestoexplainhowwerememberinformation.Themostinfluentialtheoryisthatmemoryworksasak
最新回复
(
0
)