首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
在数学课程的教学中,教师应使学生获得适应社会生活和进一步发展所必需的数学基本思想方法。义务教育教学阶段,教师应培养学生的数学基本思想力法包括符号化思想、转化思想、分类讨论思想、数形结合思想等。其中,转化思想是将一个问题由难化易,由繁化简,由复杂化简单的过程
在数学课程的教学中,教师应使学生获得适应社会生活和进一步发展所必需的数学基本思想方法。义务教育教学阶段,教师应培养学生的数学基本思想力法包括符号化思想、转化思想、分类讨论思想、数形结合思想等。其中,转化思想是将一个问题由难化易,由繁化简,由复杂化简单的过程
admin
2019-12-12
40
问题
在数学课程的教学中,教师应使学生获得适应社会生活和进一步发展所必需的数学基本思想方法。义务教育教学阶段,教师应培养学生的数学基本思想力法包括符号化思想、转化思想、分类讨论思想、数形结合思想等。其中,转化思想是将一个问题由难化易,由繁化简,由复杂化简单的过程;分类讨论思想是把所要研究的问题根据题目的特点和要求,按不同情况分类,然后再逐一研究解决的数学思想。对于初中阶段的学生而言,在学习“二次函数”的综合应用的过程中,教师对于其转化思想和分类讨论思想的培养尤为重要。
素材:如图所示,已知抛物线y=ax
2
+bx+c(a≠0)的对称轴为直线x=一1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于B点。
依据上述素材和要求,试根据问题(1)中编写的题目,以提出问题为主线进行“探究式”解题教学,撰写一份以培养学生独立思考能力及转化和分类讨沦思想为目的的教学过程设计。
选项
答案
教学过程 (一)旧知巩固 师:同学们,我们之前已经学习过了“二次函数”,现在我们一起来复习一下. 师:大家想一下什么是二次函数? 生(预设):一般地,形如y=ax
2
+bx+c(a,b,c是常数,a≠0)的函数叫作二次函数。(教师板书) 师:很好!那么,大家再想一想,二次函数的图像都有哪些性质呢? 预设学生回答:当二次函数的二次项系数a>0时,函数图像的开口向上;a<0时,函数图像的开口向下;二次函数图像的对称轴公式为[*],对应的顶点纵坐标公式为[*]:二次函数与x的交点个数我们也学过。 师:请同学们说一说二次函数与x轴的交点个数如何知道,交点如何求。 生(预设):二次函数与x轴相交,y=0就变成了一元二次方程ax
2
+bx+c=0的求根问题了。 师:这种将一类问题转化为另一类问题去解决的思想就是数学中的转化思想。△=b
2
一4ac,△>0时,方程有两 个不同的实数根,即对应的二次函数与x轴有两个交点;△=0时,方程有两个相同的实数根,即对应的二次函数与x轴有一个交点;△<0时,方程无实数根,即对应的二次函数与x轴没有交点。 师:那么二次函数的增减性呢? 生(预设):若a>0,当x>[*]时,y随x的增大而增大;当x<[*]时,y随x的增大而减小;若a<0,当x>一[*]时,y随x的增大而减小;当x<一[*]时,y随x的增大而增大。 师:这种将研究的问题按不同种情况分类去讨论解决的思想就是分类讨论思想。接下来我们一起探究一道练习题,在解题的过程中请同学们好好感受其中应用的数学思想。 (二)题目探究 例题为题目中的素材,问题以(1)中的③为例。 师:根据题目已知内容,我们首先能知道什么? 预设学生回答:可以求得B点坐标!抛物线的对称轴为x=一1,与x轴的一个交点为A(1,0),所以另一个交点B的坐标为(一3,0)。 师:通过抛物线与x轴的交点,我们可以进一步做什么? 预设学生回答:可以假设抛物线的解析式为y=a(x+3)(x一1)。 师:看一下还有什么已知条件没有用到?还可以得到什么? 预设学生回答:将点C(0,3)代入抛物线的解析式中,可以求得a=一1,所以抛物线的解析式为y=一(x+3)(x一1)=一x
2
一2x+3。 师:请看问题,点P为抛物线的对称轴x=一l上的一个动点,求使△BPC为直角三角形的点P的坐标。 师:大家想一想Rt△BPC,直角边的组合有几种? 生(预设):有3种,分别是BC⊥CP;BC⊥BP;BP⊥CP。 师:所以对于这个问题我们如何去解答? 生(预设):分类讨论! 师:那么,由垂直关系我们如何得到点P的坐标呢?(学生讨论) 教师提示:大家想一想通过已知直线可以求出点P所在的直线进而求得点P的坐标吗? 生(预设):我们可以通过已知的点B和点C,先求出直线BC的解析式,即为y=x+3。 师:现在我们一起来分情况讨论。首先,考虑BC⊥CP的情况。 学生思考讨论后,请同学回答(预设):BC⊥CP,点P是过点C且与直线BC垂直的直线y=x+3和对称轴x=-1的交点,进而求得点P的坐标为(-1,4)。(教师板书并画图) 师:那么,BC⊥BP时呢? 学生思考讨论后,请同学回答(预设):BC⊥BP,点P是过点B且与直线BC垂直的直线y=-x-3和对称轴x=-1的交点,进而求得点P的坐标为(-1,-2)。(教师板书并画图)教师预留时间让学生画图思考BP⊥CP时的情况,并提示运用转化思想,转化为圆来思考。 师设问:BC相当于圆的什么?如何求得点P呢?(结合学生回答教师板书并画图) 预设学生回答:BP⊥CP,直径所对的角为直角,BC为圆的直径,圆心为BC的中点[*].半径为[*].以BC为直径的圆的标准方程为[*].圆与对称轴x=-1的交点就是点P。将x=-1代入圆的方程.可以得到点P为[*]。 师:同学们,这就是我们课堂开始所讲的什么思想方法? 生(预设):转化思想。 师:所以最后我们可以得出多少个点P呢?结论是什么呢? 生(预设):使△BPC为直角三角形的点P有四个:P
1
(-1,4),P
2
(-1,-2),[*]。 (教师板书) 教师出示本题分类讨论P点的图像,如下图。 [*] 师:同学们,结合图像,和你的同桌同学一起回想一下这道题的解题过程,感受一下这道题涉及的转化思想和分类讨论思想。(预留时间) 师:同学们,今天的表现非常棒!这节习题课已经接近尾声。在学习中,大家要养成独立探究的习惯,结合今天学习的转化思想和分类讨论思想,将复杂的问题分块思考或者转化成其他简单的问题进行思考。数学知识之间是紧密相连的,大家要灵活运用,及时总结新知,建立知识体系。
解析
转载请注明原文地址:https://jikaoti.com/ti/c4z9FFFM
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
根据材料,按要求完成教学设计任务。材料:高中思想政治必修2《政治生活》中“共产党领导的多党合作和政治协商制度:中国特色社会主义政党制度”的节选。共产党领导的多党合作和政治协商制度:中国特色社会主义政党制度在我国,除了中国共产党,还
“世界最遥远的距离,莫过于我们坐在一起,你却在玩手机。”有人因为使用手机成瘾,让手机变成了“手雷”,严重影响身心健康。对此,我们应该()。①正视手机控制社会的事实②适度使用,防止矛盾的转化③辩证否定手机功能的拓展
早在春秋战国时期,扁鹊就提出了“望、闻、问、切”的诊疗方法,奠定了中医临床诊断和治疗的基础。此后,中医药在不断汲取世界文明成:果、丰富发展自己的同时,也逐步传播到世界各地。目前,世界卫生组织成员国中已有103个认可使用针灸。这充分说明()。
大数据(bigdata)是指数据规模巨大,类型多样且信息传播速度快的数据体系。它在生产经营、日常消费、商务活动等诸多领域源源不断地产生、积累、变化和发展,已被越来越多的企业视作重要的生产要素。大数据时代的到来,有助于企业()。①加强市场
下列成语与漫画(作者:石松涛)蕴含的哲学道理一致的是()。
材料:某教师在讲授“诚信是金”一课时,设置一个“实践探究小调查”活动。该教师直接将学生带到附近社区,在说明调查中需要注意的安全问题后,便给学生布置了“透视诚信”的调查作业,然后就让学生自由走访调查。之后该教师发现多数学生的作业都出现了问题,诸如调查视角偏颇
随着汽车行业的蓬勃发展,越来越多的人成为“有车一族”,停车难也成为不少人的“心头病”。最近,某高校飞轮式停车机器人项目组发明了一款停车“神器”,不仅解决了停车难的问题,还优化了停车环境。停车“神器”的发明佐证了()。①实践推动人们进行
在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系。已知点A的极坐标为,直线l的极坐标方程为pcos(θ一)=a,且点A在直线l上。(1)求a的值及直线l的直角坐标方程;(2)圆C的参数方程为(a为参数),试判断直线
若M、N均为n阶矩阵,则必有()。
行列式若D1=D2,λ则的值为().
随机试题
Haveyoueverwonderedwhywinterisfluseason—whypeopleneverseemtocatchthediseaseinJulyandAugust?Agroupofmicrob
A.全科医学知识教育B.全科医学岗位培训C.全科医师规范化培训D.全科医师继续医学教育E.全科医学研究生教育当前我国全科医学教育的主要形式是
下列关于随机误差的说法错误的是
在下列费用中,属于建筑安装工程间接费的是()。
A公司2014年12月31日资产负债表上的长期负债与股东权益的比例为40:60。该公司计划于2015年为一个投资项目筹集资金,可供选择的筹资方式包括:向银行申请长期借款和增发普通股,A公司以现有资本结构作为目标结构。其他有关资料如下:(1)如果A公司20
政策性银行与商业性金融机构的最显著不同在于()。
能解释鸡尾酒会现象的注意理论是()。
第二次世界大战后,一些发达资本主义国家生产自动化水平达到了空前规模。60年代工业机器人的出现,使得资本主义生产过程中,除了“白领”,“蓝领”阶层外,又新增了“纲领”,即机器人阶层,西方经济学家F.马特列在他的《技术构成与经济》一书中说,现代机器和劳动一样创
Itwasacoldday.Isatinmyroomwritingletters.Iglancedoutofthewindow.InthewindowdirectlyoppositemestoodHerr
In2010,Shanghaiportbecamethesecondlargestcargoportandthethirdlargestcontainerportintheworld.Additionally,Sha
最新回复
(
0
)