计算∫01arctanxdx.

admin2022-06-22  19

问题 计算∫01arctanxdx.

选项

答案01arctanxdx=xarctanx|01-∫01x/(1+x2)dx =π/4-(1/2)∫01d(1+x2)/(1+x2)=π/4-ln(1+x2)/2|01=π/4-ln2/2.

解析
转载请注明原文地址:https://jikaoti.com/ti/bJzGFFFM
0

相关试题推荐
    随机试题
    最新回复(0)