设A为n阶矩阵,若Ak-1a≠0,而Aka=0.证明:向量组a,Aa,…,Ak-1a线性无关.

admin2019-11-25  27

问题 设A为n阶矩阵,若Ak-1a≠0,而Aka=0.证明:向量组a,Aa,…,Ak-1a线性无关.

选项

答案令l0a+l1Aa+…+lk-1Ak-1a=0 (*) (*)两边同时左乘AAk-1得l0Ak-1a=0,因为Ak-1a≠0,所以l0=0; (*)两边同时左乘Ak-2得l1Ak-1a=0,因为Ak-1a≠0,所以l1=0,依次类推可得l2=… =lk-1=0,所以a,Aa,…,Ak-1a线性无关.

解析
转载请注明原文地址:https://jikaoti.com/ti/bHiRFFFM
0

最新回复(0)