首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
The future of personal satellite technology is here—are we ready for it? A) Satellites used to be the exclusive playthings of
The future of personal satellite technology is here—are we ready for it? A) Satellites used to be the exclusive playthings of
admin
2021-01-08
41
问题
The future of personal satellite technology is here—are we ready for it?
A) Satellites used to be the exclusive playthings of rich governments and wealthy corporations. But increasingly, as space becomes more democratized, they are coming within reach of ordinary people. Just like drones (无人机)before them, miniature satellites are beginning to fundamentally transform our conceptions of who gets to do what up above our heads.
B) As a recent report from the National Academy of Sciences highlights, these satellites hold tremendous potential for making satellite-based science more accessible than ever before. However, as the cost of getting your own satellite in orbit drops sharply, the risks of irresponsible use grow. The question here is no longer "Can we?" but "Should we?" What are the potential downsides of having a slice of space densely populated by equipment built by people not traditionally labeled as " professionals" ? And what would the responsible and beneficial development and use of this technology actually look like? Some of the answers may come from a nonprofit organization that has been building and launching amateur satellites for nearly 50 years.
C) Having your personal satellite launched into orbit might sound like an idea straight out of science fiction. But over the past few decades a unique class of satellites has been created that fits the bill; CubeSats. The "Cube" here simply refers to the satellite’s shape. The most common CubeSat is a 10cm cube, so small that a single CubeSat could easily be mistaken for a paperweight on your desk. These mini-satellites can fit in a launch vehicle’s formerly " wasted space. " Multiples can be deployed in combination for more complex missions than could be achieved by one CubeSat alone.
D) Within their compact bodies these minute satellites are able to house sensors and communications receivers/transmitters that enable operators to study Earth from space, as well as space around Earth. They’re primarily designed for Low Earth Orbit (LEO) —an easily accessible region of space from around 200 to 800 miles above Earth, where human-tended missions like the Hubble Space Telescope and the International Space Station (ISS) hang out. But they can attain more distant orbits; NASA plans for most of its future Earth-escaping payloads (to the moon and Mars especially) to carry CubeSats.
E) Because they’re so small and light, it costs much less to get a CubSat into Earth’s orbit than a traditional communications or GPS satellite. For instance, a research group here at Arizona State University recently claimed their developmental small CubeSats could cost as little as $3,000 to put in orbit. This decrease in cost allows researchers, hobbyists and even elementary school groups to put simple instruments into LEO or even having them deployed from the ISS.
F) The first CubeSat was created in the early 2000s, as a way of enabling Stanford graduate students to design, build, test and operate a spacecraft with similar capabilities to the USSR’s Sputnik (前苏联的人造卫星). Since then, NASA, the National Reconnaissance Office and even Boeing have all launched and operated CubeSats. There are more than 130 currently in operation. The NASA Educational Launch of Nano Satellite program, which offers free launches for educational groups and science missions, is now open to U. S. nonprofit corporations as well. Clearly, satellites are not just for rocket scientists anymore.
G) The National Academy of Sciences report emphasizes CubeSats’ importance in scientific discovery and the training of future space scientists and engineers. Yet it also acknowledges that widespread deployment of LEO CubeSats isn’t risk-free. The greatest concern the authors raise is space debris—pieces of "junk" that orbit the earth, with the potential to cause serious damage if they collide with operational units, including the ISS.
H) Currently, there aren’t many CubeSats and they’re tracked closely. Yet as LEO opens up to more amateur satellites, they may pose an increasing threat. As the report authors point out, even near-misses might lead to the " creation of a burdensome regulatory framework and affect the future disposition of science CubeSats. "
I) CubeSat researchers suggest that now’s the time to ponder unexpected and unintended possible consequences of more people than ever having access to their own small slice of space. In an era when you can simply buy a CubeSat kit off the shelf, how can we trust the satellites over our heads were developed with good intentions by people who knew what they were doing? Some "expert amateurs" in the satellite game could provide some inspiration for how to proceed responsibly.
J) In 1969, the Radio Amateur Satellite Corporation (AMSAT) was created in order to foster ham radio enthusiasts’ (业余无线电爱好者) participation in space research and communication. It continued the efforts, begun in 1961, by Project OSCAR—a U. S. -based group that built and launched the very first nongovernmental satellite just four years after Sputnik. As an organization of volunteers, AMSAT was putting "amateur" satellites in orbit decades before the current CubeSat craze. And over time, its members have learned a thing or two about responsibility. Here, open-source development has been a central principle. Within the organization, AMSAT has a philosophy of open sourcing everything—making technical data on all aspects of their satellites fully available to everyone in the organization, and when possible, the public. According to a member of the team responsible for FOX 1-A, AMSAT’s first CubeSat, this means that there’s no way to sneak something like explosives or an energy emitter into an amateur satellite when everyone has access to the designs and implementation.
K) However, they’re more cautious about sharing infoirmation with nonmembers, as the organization guards against others developing the ability to hijack and take control of their satellites. This form of "self-governance" is possible within long-standing amateur organizations that, over time, are able to build a sense of responsibility to community members, as well as society in general. But what happens when new players emerge, who don’t have deep roots within the existing culture?
L) Hobbyists and students are gaining access to technologies without being part of a long-standing amateur establishment. They’re still constrained by funders, launch providers and a series of regulations—all of which rein in what CubeSat developers can and cannot do. But there’s a danger they’re ill-equipped to think through potential unintended consequences. What these unintended consequences might be is admittedly far from clear. Yet we know innovators can be remarkably creative with taking technologies in unexpected directions. Think of something as seemingly benign as the cellphone—we have microfinance and text-based social networking at one end of the spectrum, and improvised (临时制作的) explosive devices at the other.
M) This is where a culture of social responsibility around CubeSats becomes important—not simply to ensure that physical risks are minimized, but to engage with a much larger community in anticipating and managing less obvious consequences of the technology. This is not an easy task. Yet the evidence from AMSAT and other areas of technology development suggests that responsible amateur communities can and do emerge around novel technologies. The challenge here, of course, is ensuring that what an amateur community considers to be responsible, actually is. Here’s where there needs to be a much wider public conversation that extends beyond government agencies and scientific communities to include students, hobbyists, and anyone who may potentially stand to be affected by the use of CubeSat technology.
The greater accessibility of mini-satellites increases the risks of their irresponsible use.
选项
答案
B
解析
B)段定位句提到,这些卫星具有巨大的潜力,使基于卫星的科学比以往任何时候都更容易接触。然而,随着将自己的卫星送人轨道的成本急剧下降,不负责任地使用卫星的风险也在增加。由上文可知,第一个定位句中的these satellites是指上一段最后一句中的miniature satellites,而题干中的mini-satellites与此对应,题干中的the greater accessibility对应原文中的more accessible,题干中的increases the risks of their irresponsible use是对原文中the risks of irresponsible use grow的同义转述,故答案为B)。
转载请注明原文地址:https://jikaoti.com/ti/b4BFFFFM
0
大学英语六级
相关试题推荐
A、Beingquietandbookish.B、Ignoringpeople’sjudgment.C、Sufferingfromstagefright.D、Havinganoutgoingpersonality.C选项都是动
A、HeexploredthenightlifeofNewYork.B、Hecollectedusedboxesfromthestreets.C、Hejoinedmanyart-relatedactivities.D
A、DifferentexperiencesinEurope.B、Differentsocialandsportorganizations.C、Differentmajorsinyourcollege.D、Differentp
Children’sHealthcareofAtlantawantstomoveGeorgiaoutofthetop10listforchildhoodobesity(肥胖),officialssaid.Doc
A、Thebuildingwiththelogshape.B、Thetraditionallogcabin.C、Theseniorhomeswithlogs.D、Theblockingbeamsandwalls.B
Forthispart,youareallowed30minutestowriteanessaybasedonthepicturebelow.Youshouldstartyouressaywithabrief
A、Theyarenotinahurrywhentheysaythingsoutloud.B、Theyactasiftheyarereflectingoneverythingcarefully.C、Theyte
A、Itcanwarnofficeworkersnottofrownatwork.B、Itcanreducetheharmoffacingacomputer.C、Itcanmakeofficeladies’e
Mostgrowingplantscontainmuchmorewaterthanallothermaterialscombined.C.R.Barneshassuggestedthatitisaspropert
Officeworkerswhowouldnormallystepintoapuborgymtocopewiththestressofaworkingdayarebeinginvitedinsteadtos
随机试题
某单线铁路隧道要求工期36个月,全长7.5km,只有进出口有进洞条件,隧道中间高洞口低,出口洞口段有20m长的坡积层,厚度较厚;进口段为风化岩有部分节理判定为Ⅲ级围岩,进洞施工时为旱季。问题:该隧道进洞应采取什么措施?简述其施工步骤。
在临床摄影中大体规定胸部的摄影距离为
血清内五类免疫球蛋白的含量由少到多的顺序是
可作为检测消化道恶性肿瘤的过筛试验是
某发电机一变压器组单元接线回路,其单相接地电容电流为20A,发电机中性点采用消弧线圈接地,消弧线圈的电感电流为18A,其脱谐度为()。
根据地基应力分布的基本规律,有关在均布荷载作用下筏形基础角点的沉降量Sc长边中点的沉降量S1和基础中心点沉降量Sm的相互关系,正确的判断为()。
会员制期货交易所会员大会应当对表决事项制作会议纪要,由出席会议的全体会员签名。()
某制造企业20×9年取得商品销售收入3000万元,出租设备租金收入200万元,发生与生产经营有关的业务招待费支出18万元。根据企业所得税法律制度的规定,该企业在计算当年应纳税所得额时,准予扣除的业务招待费为()万元。
第一机械厂的有些管理人员取得了MBA学位。因此,有些工科背景的大学毕业生取得了MBA学位。以下哪项如果为真,则最能保证上述论证成立?
结构化程序设计主要强调的是
最新回复
(
0
)