设f(x),g(x)在[a,b]上二阶可导,gˊˊ(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明: (1)在(a,b)内,g(x)≠0; (2)(a,b)内至少存在一点ξ,使.

admin2016-09-13  29

问题 设f(x),g(x)在[a,b]上二阶可导,gˊˊ(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:
(1)在(a,b)内,g(x)≠0;
(2)(a,b)内至少存在一点ξ,使

选项

答案(1)设c∈(a,b),g(c)=0. 由g(a)=g(c)=g(b)=0,g(x)在[a,c],[c,b]上两次运用罗尔定理可得gˊ(ξ1)=gˊ(ξ2)=0,其中ξ1∈(a,c),ξ2∈(c,b),对gˊ(x)在[ξ1,ξ2]上运用罗尔定理,可得gˊˊ(ξ3)=0. 因已知gˊˊ(x)≠0,故g(c)≠0. (2)F(x)=f(x)gˊ(x)-fˊ(x)g(x)在[a,b]上运用罗尔定理, F(a)=0,F(b)=0, 故[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/YixRFFFM
0

最新回复(0)