首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)是3阶正交矩阵,其中a33=-1,b=(0,0,5)T,则线性方程组Aχ=b必有一个解是_______.
设A=(aij)是3阶正交矩阵,其中a33=-1,b=(0,0,5)T,则线性方程组Aχ=b必有一个解是_______.
admin
2019-02-23
33
问题
设A=(a
ij
)是3阶正交矩阵,其中a
33
=-1,b=(0,0,5)
T
,则线性方程组Aχ=b必有一个解是_______.
选项
答案
(0,0,-5)
T
解析
由正交矩阵定义,首先AA
T
=A
T
A=E,由此可知A的列向量和行向量都是单位向量,因此可设A=
,于是
,则线性方程组Aχ=b必有一个解是(0,0,-5)
T
.
转载请注明原文地址:https://jikaoti.com/ti/XM1RFFFM
0
考研数学一
相关试题推荐
求.
设,求△ABC的面积.
设二次型f(x1,x2,x3)=XTAX,tr(A)=1,又B=且AB=O.求矩阵A.
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设.若ai≠aj(i≠j),求ATX=b的解;
设A,B是满足AB=0的任意两个非零阵,则必有().
设A,B为两个任意事件,则使减法公式P(A-C)=P(A)-P(C)成立的C为().
设A是3阶实对称矩阵,λ1,λ2,λ3是A的3个特征值,且满足a≥λ1≥λ2≥λ3≥b,A-μE是正定矩阵,则参数μ应满足()
设每次试验成功的概率为p=,X表示首次成功需要试验的次数,则X取偶数的概率为________.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(x)=0,f(x)=1,试证:对任意给定的正数a,b,在(0,1)内存在不同的点ξ,η,使
随机试题
两个以上的解剖部位的较严重损伤,即使单独存在也属于严重创伤,称为( )。
噬菌体在分类上属于
A.噻吗洛尔B.曲伏前列素C.溴莫尼定D.地匹福林E.毛果芸香碱肾上腺素前药,不良反应少的是()。
《刑事诉讼法》规定:“14岁以上不满16岁未成年犯罪的案件,一律不公开审理。”这里指的年龄是指( )。
(2008年)甲公司向某区法院起诉要求乙公司返还货款15万元,并请求依法保全乙公司价值10万元的汽车。在甲公司提供担保后,法院准予采取保全措施。二审法院最终维持某区法院要求乙公司返还货款10万元的判决。甲公司在申请强制执行时,发现诉讼期间某区法院在乙公司没
工程竣工验收未能通过,经过承包人修正缺陷再次验收检验合格。这种情况下,计算承包人的实际竣工日期应为()日。
个人理财业务是商业银行零售业务的重要组成部分,其服务对象主要为个人客户。()
产生“寻租”的根源在于()。
根据以下资料,回答下列问题。2005年比2004年的固定资产生产率高百分之多少?()
一大群行为亢进且日常饮食中包括大量含有添加剂的食物的儿童被研究者观测,用以评价他们是否存在行为问题。然后让这些儿童吃几个星期的含较少添加剂的食物,接下来再对他们进行观测。起初有接近60%的儿童有行为问题,改变了他们的饮食后,仅有30%的儿童有行为问题。基于
最新回复
(
0
)