设齐次线性方程组Am×nx=0的解全是方程b1x1+b2x2+…+bnxn=0的解,其中x=(x1,x2,…,xn)T。证明:向量b=(b1,b2,…,bn)可由A的行向量组线性表出。

admin2015-09-14  27

问题 设齐次线性方程组Am×nx=0的解全是方程b1x1+b2x2+…+bnxn=0的解,其中x=(x1,x2,…,xn)T。证明:向量b=(b1,b2,…,bn)可由A的行向量组线性表出。

选项

答案由条件知方程组Ax=0与方程组[*],因此A的极大无关行向量组也是[*]的极大无关行向量组,故6可由A的极大无关行向量组线性表出,从而知b可由A的行向量组线性表出。

解析
转载请注明原文地址:https://jikaoti.com/ti/UuNRFFFM
0

相关试题推荐
最新回复(0)