设A为n阶实对称可逆矩阵, 记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;

admin2018-04-15  60

问题 设A为n阶实对称可逆矩阵,
记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;

选项

答案[*] 因为r(A)=n,所以|A|≠0,于是[*]显然A*,A-1都是实对称矩阵.

解析
转载请注明原文地址:https://jikaoti.com/ti/UjKRFFFM
0

相关试题推荐
最新回复(0)